Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 4;7(8):4913-20.
doi: 10.1021/am508994w. Epub 2015 Feb 23.

Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications

Affiliations

Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications

Hongying Liu et al. ACS Appl Mater Interfaces. .

Abstract

A facile and rapid strategy was developed for the synthesis of ultrabright luminescent carbon nanodots (CDs) with tunable wavelength from 464 to 556 nm by introducing glutaraldehyde into the precursor solution under microwave irradiation. The fluorescence properties, including excitation and emission wavelength, quantum yield, and size of the CDs, were adjusted by changing the amount of glutaraldehyde and poly(ethylenimine). Several methods such as high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and dynamic light scattering, UV-vis, fluorescence, and Fourier transform infrared spectroscopy were employed to study the morphology and the properties of CDs. The luminescence mechanism was also discussed. In addition, confocal microscopy imaging revealed that the as-prepared CDs could be used as effective fluorescent probes in the cell imaging without obvious cytotoxicity. Moreover, a novel sensor for the detection of Co(2+) was proposed on the basis of Co(2+)-induced fluorescence quenching. These superior properties demonstrated the potential application of the CDs in cellular imaging and ion sensing.

Keywords: Co2+; carbon nanodots; imaging; microwave; wavelength-tunable.

PubMed Disclaimer

Publication types

LinkOut - more resources