Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2015 Feb 12;518(7538):187-196.
doi: 10.1038/nature14132.

New genetic loci link adipose and insulin biology to body fat distribution

Dmitry Shungin #  1   2   3 Thomas W Winkler #  4 Damien C Croteau-Chonka #  5   6 Teresa Ferreira #  7 Adam E Locke #  8 Reedik Mägi #  7   9 Rona J Strawbridge  10 Tune H Pers  11   12   13   14 Krista Fischer  9 Anne E Justice  15 Tsegaselassie Workalemahu  16 Joseph M W Wu  17 Martin L Buchkovich  5 Nancy L Heard-Costa  18   19 Tamara S Roman  5 Alexander W Drong  7 Ci Song  20   21   22 Stefan Gustafsson  21   22 Felix R Day  23 Tonu Esko  9   11   12   13 Tove Fall  20   21   22 Zoltán Kutalik  24   25   26 Jian'an Luan  23 Joshua C Randall  7   27 André Scherag  28   29 Sailaja Vedantam  11   12 Andrew R Wood  30 Jin Chen  31 Rudolf Fehrmann  32 Juha Karjalainen  32 Bratati Kahali  33 Ching-Ti Liu  17 Ellen M Schmidt  34 Devin Absher  35 Najaf Amin  36 Denise Anderson  37 Marian Beekman  38   39 Jennifer L Bragg-Gresham  8   40 Steven Buyske  41   42 Ayse Demirkan  36   43 Georg B Ehret  44   45 Mary F Feitosa  46 Anuj Goel  7   47 Anne U Jackson  8 Toby Johnson  25   26   48 Marcus E Kleber  49   50 Kati Kristiansson  51 Massimo Mangino  52 Irene Mateo Leach  53 Carolina Medina-Gomez  54   55   56 Cameron D Palmer  11   12 Dorota Pasko  30 Sonali Pechlivanis  28 Marjolein J Peters  54   56 Inga Prokopenko  7   57   58 Alena Stančáková  59 Yun Ju Sung  60 Toshiko Tanaka  61 Alexander Teumer  62 Jana V Van Vliet-Ostaptchouk  63 Loïc Yengo  64   65   66 Weihua Zhang  67   68 Eva Albrecht  69 Johan Ärnlöv  21   22   70 Gillian M Arscott  71 Stefania Bandinelli  72 Amy Barrett  57 Claire Bellis  73   74 Amanda J Bennett  57 Christian Berne  75 Matthias Blüher  76   77 Stefan Böhringer  38   78 Fabrice Bonnet  79 Yvonne Böttcher  76 Marcel Bruinenberg  80 Delia B Carba  81 Ida H Caspersen  82 Robert Clarke  83 E Warwick Daw  46 Joris Deelen  38   39 Ewa Deelman  84 Graciela Delgado  49 Alex Sf Doney  85 Niina Eklund  51   86 Michael R Erdos  87 Karol Estrada  12   56   88 Elodie Eury  64   65   66 Nele Friedrich  89 Melissa E Garcia  90 Vilmantas Giedraitis  91 Bruna Gigante  92 Alan S Go  93 Alain Golay  94 Harald Grallert  69   95   96 Tanja B Grammer  49 Jürgen Gräßler  97 Jagvir Grewal  67   68 Christopher J Groves  57 Toomas Haller  9 Goran Hallmans  98 Catharina A Hartman  99 Maija Hassinen  100 Caroline Hayward  101 Kauko Heikkilä  102 Karl-Heinz Herzig  103   104   105 Quinta Helmer  38   78   106 Hans L Hillege  53   107 Oddgeir Holmen  108 Steven C Hunt  109 Aaron Isaacs  36   110 Till Ittermann  111 Alan L James  112   113 Ingegerd Johansson  3 Thorhildur Juliusdottir  7 Ioanna-Panagiota Kalafati  114 Leena Kinnunen  51 Wolfgang Koenig  50 Ishminder K Kooner  67 Wolfgang Kratzer  115 Claudia Lamina  116 Karin Leander  92 Nanette R Lee  81 Peter Lichtner  117 Lars Lind  118 Jaana Lindström  51 Stéphane Lobbens  64   65   66 Mattias Lorentzon  119 François Mach  45 Patrik Ke Magnusson  20 Anubha Mahajan  7 Wendy L McArdle  120 Cristina Menni  52 Sigrun Merger  121 Evelin Mihailov  9   122 Lili Milani  9 Rebecca Mills  67 Alireza Moayyeri  52   123 Keri L Monda  15   124 Simon P Mooijaart  38   125 Thomas W Mühleisen  126   127 Antonella Mulas  128 Gabriele Müller  129 Martina Müller-Nurasyid  69   130   131   132 Ramaiah Nagaraja  133 Michael A Nalls  134 Narisu Narisu  87 Nicola Glorioso  135 Ilja M Nolte  107 Matthias Olden  4 Nigel W Rayner  7   27   57 Frida Renstrom  2 Janina S Ried  69 Neil R Robertson  7   57 Lynda M Rose  136 Serena Sanna  128 Hubert Scharnagl  137 Salome Scholtens  80 Bengt Sennblad  10   138 Thomas Seufferlein  115 Colleen M Sitlani  139 Albert Vernon Smith  140   141 Kathleen Stirrups  27   142 Heather M Stringham  8 Johan Sundström  118 Morris A Swertz  32 Amy J Swift  87 Ann-Christine Syvänen  21   143 Bamidele O Tayo  144 Barbara Thorand  96   145 Gudmar Thorleifsson  146 Andreas Tomaschitz  147 Chiara Troffa  135 Floor Va van Oort  148 Niek Verweij  53 Judith M Vonk  107 Lindsay L Waite  35 Roman Wennauer  149 Tom Wilsgaard  150 Mary K Wojczynski  46 Andrew Wong  151 Qunyuan Zhang  46 Jing Hua Zhao  23 Eoin P Brennan  152 Murim Choi  153 Per Eriksson  10 Lasse Folkersen  10 Anders Franco-Cereceda  154 Ali G Gharavi  155 Åsa K Hedman  7   21   22 Marie-France Hivert  156   157 Jinyan Huang  158   159 Stavroula Kanoni  142 Fredrik Karpe  57   160 Sarah Keildson  7 Krzysztof Kiryluk  155 Liming Liang  159   161 Richard P Lifton  162 Baoshan Ma  159   163 Amy J McKnight  164 Ruth McPherson  165 Andres Metspalu  9   122 Josine L Min  120 Miriam F Moffatt  166 Grant W Montgomery  167 Joanne M Murabito  18   168 George Nicholson  169   170 Dale R Nyholt  167   171 Christian Olsson  154 John Rb Perry  7   30   52 Eva Reinmaa  9 Rany M Salem  11   12   13 Niina Sandholm  172   173   174 Eric E Schadt  175 Robert A Scott  23 Lisette Stolk  38   56 Edgar E Vallejo  176 Harm-Jan Westra  32 Krina T Zondervan  7   177 ADIPOGen ConsortiumCARDIOGRAMplusC4D ConsortiumCKDGen ConsortiumGEFOS ConsortiumGENIE ConsortiumGLGCICBPInternational Endogene ConsortiumLifeLines Cohort StudyMAGIC InvestigatorsMuTHER ConsortiumPAGE ConsortiumReproGen ConsortiumPhilippe Amouyel  178 Dominique Arveiler  179 Stephan Jl Bakker  180 John Beilby  71   181 Richard N Bergman  182 John Blangero  73 Morris J Brown  183 Michel Burnier  184 Harry Campbell  185 Aravinda Chakravarti  44 Peter S Chines  87 Simone Claudi-Boehm  121 Francis S Collins  87 Dana C Crawford  186   187 John Danesh  188 Ulf de Faire  92 Eco Jc de Geus  189   190 Marcus Dörr  191   192 Raimund Erbel  193 Johan G Eriksson  51   194   195 Martin Farrall  7   47 Ele Ferrannini  196   197 Jean Ferrières  198 Nita G Forouhi  23 Terrence Forrester  199 Oscar H Franco  54   55 Ron T Gansevoort  180 Christian Gieger  69 Vilmundur Gudnason  140   141 Christopher A Haiman  200 Tamara B Harris  90 Andrew T Hattersley  201 Markku Heliövaara  51 Andrew A Hicks  202 Aroon D Hingorani  203 Wolfgang Hoffmann  111   192 Albert Hofman  54   55 Georg Homuth  62 Steve E Humphries  204 Elina Hyppönen  205   206   207   208 Thomas Illig  95   209 Marjo-Riitta Jarvelin  68   105   210   211   212   213 Berit Johansen  82 Pekka Jousilahti  51 Antti M Jula  51 Jaakko Kaprio  51   86   102 Frank Kee  214 Sirkka M Keinanen-Kiukaanniemi  215   216 Jaspal S Kooner  67   166   217 Charles Kooperberg  218 Peter Kovacs  76   77 Aldi T Kraja  46 Meena Kumari  219   220 Kari Kuulasmaa  51 Johanna Kuusisto  221 Timo A Lakka  100   222   223 Claudia Langenberg  23   219 Loic Le Marchand  224 Terho Lehtimäki  225 Valeriya Lyssenko  226   227 Satu Männistö  51 André Marette  228   229 Tara C Matise  42 Colin A McKenzie  199 Barbara McKnight  230 Arthur W Musk  231 Stefan Möhlenkamp  193 Andrew D Morris  85 Mari Nelis  9 Claes Ohlsson  119 Albertine J Oldehinkel  99 Ken K Ong  23   151 Lyle J Palmer  232   233 Brenda W Penninx  190   234 Annette Peters  95   132   145 Peter P Pramstaller  202   235 Olli T Raitakari  236   237 Tuomo Rankinen  238 D C Rao  46   60   239 Treva K Rice  60   239 Paul M Ridker  136   240 Marylyn D Ritchie  241 Igor Rudan  186   242 Veikko Salomaa  51 Nilesh J Samani  243   244 Jouko Saramies  245 Mark A Sarzynski  238 Peter Eh Schwarz  97   246 Alan R Shuldiner  247   248   249 Jan A Staessen  250   251 Valgerdur Steinthorsdottir  146 Ronald P Stolk  107 Konstantin Strauch  69   131 Anke Tönjes  76   77 Angelo Tremblay  252 Elena Tremoli  253 Marie-Claude Vohl  229   254 Uwe Völker  62   192 Peter Vollenweider  255 James F Wilson  185 Jacqueline C Witteman  55 Linda S Adair  256 Murielle Bochud  257   258 Bernhard O Boehm  259   115 Stefan R Bornstein  97 Claude Bouchard  238 Stéphane Cauchi  64   65   66 Mark J Caulfield  260 John C Chambers  67   68   217 Daniel I Chasman  136   240 Richard S Cooper  144 George Dedoussis  114 Luigi Ferrucci  61 Philippe Froguel  58   64   65   66 Hans-Jörgen Grabe  261   262 Anders Hamsten  10 Jennie Hui  71   181   263 Kristian Hveem  108 Karl-Heinz Jöckel  28 Mika Kivimaki  219 Diana Kuh  151 Markku Laakso  221 Yongmei Liu  264 Winfried März  49   137   265 Patricia B Munroe  260 Inger Njølstad  150 Ben A Oostra  36   110   266 Colin Na Palmer  85 Nancy L Pedersen  20 Markus Perola  9   51   86 Louis Pérusse  229   252 Ulrike Peters  218 Chris Power  208 Thomas Quertermous  267 Rainer Rauramaa  100   223 Fernando Rivadeneira  54   55   56 Timo E Saaristo  268   269 Danish Saleheen  189   270   271 Juha Sinisalo  272 P Eline Slagboom  38   39 Harold Snieder  107 Tim D Spector  52 Kari Stefansson  146   273 Michael Stumvoll  76   77 Jaakko Tuomilehto  51   274   275   276 André G Uitterlinden  54   55   56 Matti Uusitupa  277   278 Pim van der Harst  32   53   279 Giovanni Veronesi  280 Mark Walker  281 Nicholas J Wareham  23 Hugh Watkins  7   47 H-Erich Wichmann  282   283   284 Goncalo R Abecasis  8 Themistocles L Assimes  267 Sonja I Berndt  285 Michael Boehnke  8 Ingrid B Borecki  46 Panos Deloukas  27   142   286 Lude Franke  32 Timothy M Frayling  30 Leif C Groop  86   227 David J Hunter  6   16   159 Robert C Kaplan  287 Jeffrey R O'Connell  247   248 Lu Qi  6   16 David Schlessinger  133 David P Strachan  288 Unnur Thorsteinsdottir  146   273 Cornelia M van Duijn  36   54   55   110 Cristen J Willer  31   34   289 Peter M Visscher  290   291 Jian Yang  290   291 Joel N Hirschhorn  11   12   13 M Carola Zillikens  54   56 Mark I McCarthy  7   57   292 Elizabeth K Speliotes  33 Kari E North  15   293 Caroline S Fox  18 Inês Barroso  27   294   295 Paul W Franks  1   2   16 Erik Ingelsson  7   21   22 Iris M Heid  4   69 Ruth Jf Loos  23   296   297   298 L Adrienne Cupples  17   18 Andrew P Morris  7   9   299 Cecilia M Lindgren  7   12 Karen L Mohlke  5
Collaborators, Affiliations
Meta-Analysis

New genetic loci link adipose and insulin biology to body fat distribution

Dmitry Shungin et al. Nature. .

Abstract

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

PubMed Disclaimer

Figures

Extended Data Figure 1
Extended Data Figure 1. Overall WHRadjBMI meta-analysis study design
Data (dashed lines) and analyses (solid lines) related to the genome-wide association study (GWAS) cohorts for waist-hip ratio adjusted for body mass index (WHRadjBMI) are colored red and those related to the Metabochip (MC) cohorts are colored blue. The two genomic control (λGC) corrections (within-study and among-studies) performed on associations from each dataset are represented by gray-outlined circles. The λGC corrections for the GWAS meta-analysis were based on all SNPs and the λGC corrections for the Metabochip meta-analysis were based on a null set of 4,319 SNPs previously associated with QT interval. The joint meta-analysis of the GWAS and MC datasets is colored purple. All SNP counts reflect a sample size filter of N ≥ 50,000 subjects. Additional WHRadjBMI meta-analyses included Metabochip data from up to 14,371 subjects of East Asian, South Asian, or African American ancestry from eight cohorts. Counts for the meta-analyses of waist circumference (WC), hip circumference (HIP), and their BMI-adjusted counterparts (WCadjBMI and HIPadjBMI) differ from those of WHRadjBMI because some cohorts only had phenotype data available for one type of body circumference measurement (see Supplementary Table 2).
Extended Data Figure 2
Extended Data Figure 2. Female- and male-specific effects, phenotypic variances, and genetic correlations
a, Figure showing effect beta estimates for the 20 WHRadjBMI SNPs showing significant evidence of sexual dimorphism. Sex-specific effect betas and 95% confidence intervals for SNPs associated with waist-hip ratio adjusted for body mass index (WHRadjBMI) are shown as red circles and blue squares for women and men, respectively. The SNPs are classified into three categories: (i) those showing a female-specific effect (“Women SSE”), namely a significant effect in women and no effect in men (Pwomen < 5 × 10−8, Pmen ≥ 0.05), (ii) those showing a pronounced female effect (“Women CED”), namely a significant effect in women and a less significant but directionally consistent effect in men (Pwomen < 5 × 10−8, 5 × 10−8 < Pmen ≤ 0.05); and (iii) those showing a male-specific effect (“Men SSE”), namely a significant effect in men and no effect in women (Pmen < 5 × 10−8, Pwomen ≥ 0.05). Within each of the three categories, the loci were sorted by increasing P value of sex-based heterogeneity in the effect betas. b, Figure showing standardized sex-specific phenotypic variance components for six waist-related traits. Values are shown in men (M) and women (W) from the Swedish Twin Registry (N = 11,875). The ACE models are decomposed into additive genetic components (A) shown in black, common environmental components (C) in gray, and non-shared environmental components (E) in white. Components are shown for waist circumference (WC), hip circumference (HIP), waist-hip ratio (WHR), and their body mass index (BMI)-adjusted counterparts (WCadjBMI, HIPadjBMI, and WHRadjBMI). When the A component is different in men and women with P < 0.05 for a given trait, its name is marked with an asterisk. c, Table showing genetic correlations of waist-related traits with height, adjusted for age and body mass index. Genetic correlations of three traits with height were based on variance component models in the Framingham Heart Study and TWINGENE study (see Online Methods). WCadjBMI, waist circumference adjusted for BMI; WHRadjBMI, waist-hip ratio adjusted for BMI; HIPadjBMI, hip circumference adjusted for BMI.
Extended Data Figure 3
Extended Data Figure 3. Cumulative genetic risk scores for WHRadjBMI applied to the KORA study cohort
a, All subjects (N = 3,440, Ptrend = 6.7 × 10−4). b, Only women (N = 1,750, Ptrend = 1.0 × 10−11). c, Only men (N = 1,690, Ptrend = 0.02). Each genetic risk score (GRS) illustrates the joint effect of the waist-hip ratio adjusted for body mass index (WHRadjBMI)-increasing alleles of the 49 identified variants from Table 1 weighted by the relative effect sizes from the applicable sex-combined or sex-specific meta-analysis. The mean WHRadjBMI residual and 95% confidence interval is plotted for each GRS category (red dots). The histograms show each GRS is normally distributed in KORA (gray bars).
Extended Data Figure 4
Extended Data Figure 4. Heat map of unsupervised hierarchical clustering of the effects of 49 WHRadjBMI SNPs on 22 anthropometric and metabolic traits and diseases
The matrix of Z-scores representing the set of associations was scaled by row (locus name) and by column (trait) to range from −3 to 3. Negative values (blue) indicate that the waist-hip ratio adjusted for body mass index (WHRadjBMI)-increasing allele was associated with decreased values of the trait and positive values (red) indicate that this allele was associated with increased values of the trait. Dendrograms indicating the clustering relationships are shown to the left and above the heat map. The WHRadjBMI-increasing alleles at the 49 lead SNPs segregate into three major clusters comprised of alleles that associate with: 1) larger waist circumference adjusted for BMI (WCadjBMI) and smaller hip circumference adjusted for BMI (HIPadjBMI) (n = 30 SNPs); 2) taller stature and larger WCadjBMI (n = 8 SNPs); and 3) shorter stature and smaller HIPadjBMI (n = 11 SNPs). The three visually identified SNP clusters could be statistically distinguished with >90% confidence. Alleles of the first cluster were predominantly associated with lower high density lipoprotein (HDL) cholesterol and with higher triglycerides and fasting insulin adjusted for BMI (FIadjBMI). eGFRcrea, estimated glomerular filtration rate based on creatinine; LDL cholesterol, low-density lipoprotein cholesterol; UACR, urine albumin-to-creatinine ratio; BMD, bone mineral density.
Extended Data Figure 5
Extended Data Figure 5. Regulatory element overlap with WHRadjBMI-associated loci
a, Five variants associated with waist-hip ratio adjusted for body mass index (WHRadjBMI) and located ~77 kb upstream of the first CALCRL transcription start site overlap regions with genomic evidence of regulatory activity in endothelial cells. b, Five WHRadjBMI variants, including rs8817452, in a 1.1 kb region (box) ~250 kb downstream of the first LEKR1 transcription start site overlap evidence of active enhancer activity in adipose nuclei. Signal enrichment tracks are from the ENCODE Integrative Analysis and the Roadmap Epigenomics track hubs on the UCSC Genome Browser. Transcripts are from the GENCODE basic annotation.
Figure 1
Figure 1. Regional SNP association plots illustrating the complex genetic architecture at two WHRadjBMI loci
Sex-combined meta-analysis SNP associations in European individuals were plotted with −log10 P values (left y-axis) and estimated local recombination rate in blue (right y-axis). Three index SNPs near HOXC6-HOXC13 (ac) and four near TBX15-WARS2-SPAG17 (dg) were identified through approximate conditional analyses of sex-combined or sex-specific associations (values shown as Pconditional <5×10−8, see Methods). The signals are distinguished by both color and shape, and linkage disequilibrium (r2) of nearby SNPs is shown by color intensity gradient.
Figure 2
Figure 2. Gene set enrichment and tissue expression of genes at WHRadjBMI-associated loci (GWAS-only P<10−5)
a, Reconstituted gene sets found to be significantly enriched by DEPICT (FDR<5%) are represented as nodes, with pairwise overlap denoted by the width of connecting lines and empirical enrichment P value indicated by color intensity (darker is more significant). b, The ‘Decreased Liver Weight’ meta-node, which consisted of 12 overlapping gene sets, including adiponectin signaling and insulin sensitivity. c, Based on expression patterns in 37,427 human microarray samples, annotations found to be significantly enriched by DEPICT are shown, grouped by type and significance.

Comment in

Similar articles

  • Genetic studies of body mass index yield new insights for obesity biology.
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Mägi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Zhao JH, Zhao W, Chen J, Fehrmann R, Hedman ÅK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Leach IM, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stančáková A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Ärnlöv J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Blüher M, Böhringer S, Bonnycastle LL, Böttcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Chen YI, Clarke R, Daw EW, de Craen AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N, Estrada K, Eury E, Folkersen L, Fraser RM, Garci… See abstract for full author list ➔ Locke AE, et al. Nature. 2015 Feb 12;518(7538):197-206. doi: 10.1038/nature14177. Nature. 2015. PMID: 25673413 Free PMC article.
  • Genome-wide association of body fat distribution in African ancestry populations suggests new loci.
    Liu CT, Monda KL, Taylor KC, Lange L, Demerath EW, Palmas W, Wojczynski MK, Ellis JC, Vitolins MZ, Liu S, Papanicolaou GJ, Irvin MR, Xue L, Griffin PJ, Nalls MA, Adeyemo A, Liu J, Li G, Ruiz-Narvaez EA, Chen WM, Chen F, Henderson BE, Millikan RC, Ambrosone CB, Strom SS, Guo X, Andrews JS, Sun YV, Mosley TH, Yanek LR, Shriner D, Haritunians T, Rotter JI, Speliotes EK, Smith M, Rosenberg L, Mychaleckyj J, Nayak U, Spruill I, Garvey WT, Pettaway C, Nyante S, Bandera EV, Britton AF, Zonderman AB, Rasmussen-Torvik LJ, Chen YD, Ding J, Lohman K, Kritchevsky SB, Zhao W, Peyser PA, Kardia SL, Kabagambe E, Broeckel U, Chen G, Zhou J, Wassertheil-Smoller S, Neuhouser ML, Rampersaud E, Psaty B, Kooperberg C, Manson JE, Kuller LH, Ochs-Balcom HM, Johnson KC, Sucheston L, Ordovas JM, Palmer JR, Haiman CA, McKnight B, Howard BV, Becker DM, Bielak LF, Liu Y, Allison MA, Grant SF, Burke GL, Patel SR, Schreiner PJ, Borecki IB, Evans MK, Taylor H, Sale MM, Howard V, Carlson CS, Rotimi CN, Cushman M, Harris TB, Reiner AP, Cupples LA, North KE, Fox CS. Liu CT, et al. PLoS Genet. 2013;9(8):e1003681. doi: 10.1371/journal.pgen.1003681. Epub 2013 Aug 15. PLoS Genet. 2013. PMID: 23966867 Free PMC article.
  • Sexual dimorphisms in genetic loci linked to body fat distribution.
    Pulit SL, Karaderi T, Lindgren CM. Pulit SL, et al. Biosci Rep. 2017 Feb 3;37(1):BSR20160184. doi: 10.1042/BSR20160184. Print 2017 Feb 28. Biosci Rep. 2017. PMID: 28073971 Free PMC article. Review.
  • Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity.
    Tang J, Zhou H, Sahay K, Xu W, Yang J, Zhang W, Chen W. Tang J, et al. Int J Obes (Lond). 2019 Jun;43(6):1269-1280. doi: 10.1038/s41366-018-0222-y. Epub 2018 Oct 9. Int J Obes (Lond). 2019. PMID: 30301961 Free PMC article.
  • Genomics of body fat distribution.
    Saini S, Kaur Walia G, Pal Sachdeva M, Gupta V. Saini S, et al. J Genet. 2021;100:32. J Genet. 2021. PMID: 34238772 Review.

Cited by

References

    1. Pischon T, et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 2008;359:2105–2120. - PubMed
    1. Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 2005;81:555–563. - PubMed
    1. Canoy D. Distribution of body fat and risk of coronary heart disease in men and women. Curr. Opin. Cardiol. 2008;23:591–598. - PubMed
    1. Snijder MB, et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am. J. Clin. Nutr. 2003;77:1192–1197. - PubMed
    1. Yusuf S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–1649. - PubMed

Publication types

MeSH terms

Grants and funding