Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan;79(1):1-7.

Effects of interferon-γ knockdown on vaccine-induced immunity against Marek's disease in chickens

Affiliations

Effects of interferon-γ knockdown on vaccine-induced immunity against Marek's disease in chickens

Kamran Haq et al. Can J Vet Res. 2015 Jan.

Abstract

Interferon (IFN)-γ has been shown to be associated with immunity to Marek's disease virus (MDV). The overall objective of this study was to investigate the causal relationship between IFN-γ and vaccine-conferred immunity against MDV in chickens. To this end, 3 small interfering RNAs (siRNAs) targeting chicken IFN-γ, which had previously been shown to reduce IFN-γ expression in vitro, and a control siRNA were selected to generate recombinant avian adeno-associated virus (rAAAV) expressing short-hairpin small interfering RNAs (shRNAs). An MDV challenge trial was then conducted: chickens were vaccinated with herpesvirus of turkey (HVT), administered the rAAAV expressing shRNA, and then challenged with MDV. Tumors were observed in 4 out of 10 birds that were vaccinated with HVT and challenged but did not receive any rAAAV, 5 out of 9 birds that were administered the rAAAV containing IFN-γ shRNA, and 2 out of 10 birds that were administered a control enhanced green fluorescent protein siRNA. There was no significant difference in MDV genome load in the feather follicle epithelium of the birds that were cotreated with the vaccine and the rAAAV compared with the vaccinated MDV-infected birds. These results suggest that AAAV-based vectors can be used for the delivery of shRNA into chicken cells. However, administration of the rAAAV expressing shRNA targeting chicken IFN-γ did not seem to fully abrogate vaccine-induced protection.

Il a été démontré que l’interféron (INF)-γ est associé à l’immunité contre le virus de la maladie de Marek (VMM). L’objectif général de la présente étude était d’examiner la relation causale entre l’IFN-γ et l’immunité conférée par le vaccin contre le VMM chez les poulets. Pour y parvenir, trois petits ARN interférant (siARN) ciblant l’IFN-γ, et qui avaient préalablement été montré comme étant capable de réduire l’expression in vitro de l’IFN-γ, et un siARN témoin furent choisis afin de générer du virus adéno-associé aviaire recombinant (rAAAV) exprimant de courtes boucles de siRNA (shRNA). Un essai d’infection par VMM fut alors réalisé : des poulets furent vaccinés avec de l’herpèsvirus de dinde (HVT), reçurent le rAAAV exprimant les shRNA, et par la suite challengés avec le VMM. Des tumeurs furent observées chez 4 des 10 poulets qui avaient été vacciné avec HVT et challengés mais qui n’avaient pas reçu aucun rAAAV, 5 des 9 oiseaux qui avaient reçu le rAAAV contenant l’IFN-γ avec les shRNA, et 2 des 10 oiseaux témoins qui avaient reçu un siRNA qui augmentait la protéine fluorescente verte. Il n’y avait aucune différence significative dans la charge de génome de VMM dans l’épithélium du follicule des plumes des oiseaux qui avaient été co-traités avec le vaccin et le rAAAV comparativement aux oiseaux non-vaccinés avec MMV et infectés. Ces résultats suggèrent que les vecteurs à base d’AAAV peuvent être utilisés pour la livraison de shRNA dans les cellules des oiseaux. Toutefois, l’administration de rAAAV exprimant des shRNA ciblant l’IFN-γ des oiseaux n’a pas semblé complètement abrogé la protection induite par le vaccin.(Traduit par Docteur Serge Messier).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Mean number of copies of the viral genome [and standard error (SE)] of recombinant avian adeno-associated virus (rAAAV) in various tissues of chicks (16 per group) euthanized at 48 h, 120 h, 14 d, or 26 d after administration at 1 d of age of a lower dose [1 × 109 genomic copies (black bars)] or a higher dose [1 × 1010 genomic copies (hatched bars)] of an rAAAV expressing short-hairpin small interfering RNA targeting chicken interferon-γ (rAAAV:IFN-γ-shRNA).
Figure 2
Figure 2
Necropsy data (mean and SE) for 6 groups of chicks (9 to 10 per group) 21 d after injection of a very virulent strain (RB1B) of Marek’s disease virus (MDV) or sham injection with phosphate-buffered saline at 5 d of age, some groups having been vaccinated with herpesvirus of turkey (HVT) on the day of hatch. A — body weight; B — frequency of gross tumors; C — ratio of spleen weight to body weight; D — ratio of weight of bursa of Fabricius to body weight. Group 1 — MDV-infected only; group 2 — MDV-infected after administration of all 3 rAAAV:IFN-γ-shRNAs (1 × 1010 genomic copies of each); group 3 — MDV-infected after HVT vaccination; group 4 — MDV-infected after HVT vaccination and administration of a control shRNA targeting enhanced green fluorescent protein (EGFP-S1 DS); group 5 — MDV-infected after HVT vaccination and administration of all 3 rAAAV:IFN-γ-shRNAs; group 6 — uninfected and unvaccinated controls. Asterisks indicate a significant difference (P ≤ 0.05) between this mean and the means for all the vaccinated groups and control group 6.
Figure 3
Figure 3
Mean MDV genome load (and SE) per 100 ng of DNA in feather follicle epithelium (FFE) at 4, 7, 10, 14, and 21 d after infection in groups 1 to 5. Asterisks indicate a significant difference (P ≤ 0.05) between this mean and the means for the unvaccinated groups.
Figure 4
Figure 4
Cytokine mRNA expression in spleen tissues of the 6 groups of chickens. IFN-γ (target) and β-actin (reference) gene expression in spleen was quantified by real time RT-PCR using SYBR. Target gene expression is presented relative to β-actin expression and normalized to a calibrator. Data is presented as mean expression (and SE) of each group. NS — not a significant difference.

Similar articles

Cited by

References

    1. Calnek BW. Pathogenesis of Marek’s disease virus infection. Curr Top Microbiol Immunol. 2001;255:25–55. - PubMed
    1. Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek’s disease virus in chickens. Vet Immunol Immunopathol. 2010;138:292–302. - PubMed
    1. Xing Z, Schat KA. Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek’s disease virus. J Virol. 2000;74:3605–3612. - PMC - PubMed
    1. Abdul-Careem MF, Hunter BD, Parvizi P, Haghighi HR, Thanthrige-Don N, Sharif S. Cytokine gene expression patterns associated with immunization against Marek’s disease in chickens. Vaccine. 2007;25:424–432. - PubMed
    1. Haq K, Elawadli I, Parvizi P, Mallick AI, Behboudi S, Sharif S. Interferon-gamma influences immunity elicited by vaccines against very virulent Marek’s disease virus. Antiviral Res. 2011;90:218–226. - PubMed

Publication types

MeSH terms

LinkOut - more resources