Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jan;79(1):52-7.

Flow cytometric evaluation of disseminated intravascular coagulation in a canine endotoxemia model

Affiliations

Flow cytometric evaluation of disseminated intravascular coagulation in a canine endotoxemia model

Dohyeon Yu et al. Can J Vet Res. 2015 Jan.

Abstract

Sepsis is associated with substantial morbidity and mortality in dogs. Alterations in hemostasis by systemic inflammation play an important role in the pathophysiology of sepsis. To evaluate the functional hemostatic changes in sepsis, we evaluated coagulation profiles and flow cytometric measurement of P-selectin (CD62P) expression on platelets, as well as platelet-leukocyte aggregation from a lipopolysaccharide (LPS)-induced endotoxemia model in dogs (n = 7). A sublethal dose of LPS [1 mg/kg body weight (BW)] induced thrombocytopenia and increased activated partial thromboplastin time (aPTT), prothrombin time (PT), and D-dimer concentrations. Flow cytometry analysis showed a significant increase in P-selectin expression on platelets between 1 and 24 h of a total 48 h of the experiment. In addition, platelet-leukocyte aggregation was significantly increased in the early stage of endotoxemia (at 1 and < 6 h for platelet-monocyte aggregation and at 3 h for platelet-neutrophil aggregation). Our results suggest that CD62P expression on platelets and platelet-leukocyte aggregation, as measured by flow cytometry, can be useful biomarkers of disseminated intravascular coagulation (DIC) in canine sepsis. These functional changes contribute to our understanding of the pathophysiology of hemostasis in endotoxemia.

Chez les chiens la septicémie est associée à une morbidité et une mortalité élevée. Les modifications de l’hémostase par une inflammation systémique jouent un rôle important dans la pathophysiologie de la septicémie. Afin d’évaluer les changements hémostatiques fonctionnels lors de septicémie, une évaluation fut faite des profils de coagulation et des mesures par cytométrie en flux de l’expression de P-sélectine (CD62) sur les plaquettes, ainsi que de l’agrégation plaquettes-leucocytes dans un modèle d’endotoxémie induite par le lipopolysaccharide (LPS) chez des chiens (n = 7). Une dose sub-léthale de LPS [1 mg/kg de poids corporel] induisit une thrombocytopénie et augmenta le temps de thromboplastine partielle activée (aPTT), le temps de prothrombine (PT), et les concentrations de dimère-D. L’analyse par cytométrie en flux a montré une augmentation significative de l’expression de P-sélectine sur les plaquettes entre 1 et 24 h du total de 48 h que dura l’expérience. De plus, l’agrégation plaquettes-leucocytes était augmentée de manière significative dans les stages initiaux de l’endotoxémie (à 1 et < 6 h pour l’agrégation plaquettes-monocytes et 3 h pour l’agrégation plaquettes-neutrophiles). Nos résultats suggèrent que l’expression de CD62P sur les plaquettes et l’agrégation plaquettes-leucocytes, telle que mesurée par cytométrie en flux, peuvent être des biomarqueurs utiles de la coagulation intravasculaire disséminée (DIC) lors de septicémie canine. Ces changements fonctionnels contribuent à notre compréhension de la pathophysiologie de l’hémostase lors d’endotoxémie.(Traduit par Docteur Serge Messier).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Measurement of platelet-leukocyte aggregation from PMA stimulated blood. Canine blood was incubated with phorbol myristate acetate (PMA, 10 μM) at 37°C for 20 min in vitro and platelet-leukocyte aggregation was measured using flow cytometry. CD14 antibody was used as a neutrophil/monocyte surface marker and CD61 was used as a platelet surface marker. Neutrophils/monocytes were logically gated based on forward/side scatter in flow cytometry (a) and discriminated by CD14 (b). Among the gated cell population shown in Figure 1(a) and (b), CD14 bright+/CD61+ double positive cells (upper right quadrant population) represented monocyte-platelet aggregation and CD14 dim+/CD61+-double-positive cells (upper left quadrant population) represented granulocyte-platelet aggregation (c).
Figure 2
Figure 2
Alterations in coagulation tests in control and in dogs given LPS. Dogs were slowly injected with lipopolysaccharide (LPS, 1 mg/kg BW from E. coli O111: B4, solid black line) or saline (control, grey line) and blood was periodically collected from the jugular vein. (a) Platelet counts; (b) Prothrombin time; (c) Activated partial thromboplastin time; and (d) D-dimer concentrations (all values from the controls were below detection limits). * P < 0.05, ** P < 0.01 versus control at each time point.
Figure 3
Figure 3
Alterations in CD62P (P-selectin) expression on platelets in control and in dogs given LPS. Dogs were injected with lipopolysaccharide (LPS, 1 mg/kg BW from E. coli O111: B4, solid black line) or saline (control, dashed line). Platelets were selected by sorting out CD61-PE-positive cells by flow cytometry. The percentage of CD62P-FITC positive cells compared to isotype control was calculated by histogram. The same letters designate a significant difference in the positive of CD62P-positive cells within or between groups.
Figure 4
Figure 4
Percentage of platelet-leukocyte aggregation by flow cytometry in control and LPS dogs. Platelet-neutrophil aggregation increased 3 h after lipopolysaccharide (LPS) injection (a), whereas platelet-leukocyte aggregation increased in monocytes from 3 to 6 h after LPS injection (b). The same letters designate a significant difference in platelet-leukocyte aggregation between groups.

Similar articles

Cited by

References

    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003 Apr;29:530–538. - PubMed
    1. Bentley AM, Otto CM, Shofer FS. Comparison of dogs with septic peritonitis: 1988–1993 versus 1999–2003. J Vet Emerg Crit Care (San Antonio) 2007;17:391–398.
    1. Yu D-H, Nho D-H, Song R-H, et al. High-mobility group box 1 as a surrogate prognostic marker in dogs with systemic inflammatory response syndrome. J Vet Emerg Crit Care (San Antonio) 2010;20:298–302. - PubMed
    1. Rau S, Kohn B, Richter C, et al. Plasma interleukin-6 response is predictive for severity and mortality in canine systemic inflammatory response syndrome and sepsis. Vet Clin Pathol. 2007 Sep;36:253–260. - PubMed
    1. Luschini MA, Fletcher DJ, Schoeffler GL. Retrospective Study: Incidence of ionized hypocalcemia in septic dogs and its association with morbidity and mortality: 58 cases (2006–2007) J Vet Emerg Crit Care. 2010;20:406–412. - PubMed

Publication types

MeSH terms

LinkOut - more resources