β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis
- PMID: 25678385
- PMCID: PMC4475471
- DOI: 10.1016/j.jhep.2015.01.036
β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis
Abstract
Background & aims: Rapid induction of β-PDGF receptor (β-PDGFR) is a core feature of hepatic stellate cell activation, but its cellular impact in vivo is not well characterized. We explored the contribution of β-PDGFR-mediated pathway activation to hepatic stellate cell responses in liver injury, fibrogenesis, and carcinogenesis in vivo using genetic models with divergent β-PDGFR activity, and assessed its prognostic implications in human cirrhosis.
Methods: The impact of either loss or constitutive activation of β-PDGFR in stellate cells on fibrosis was assessed following carbon tetrachloride (CCl4) or bile duct ligation. Hepatocarcinogenesis in fibrotic liver was tracked after a single dose of diethylnitrosamine (DEN) followed by repeated injections of CCl4. Genome-wide expression profiling was performed from isolated stellate cells that expressed or lacked β-PDGFR to determine deregulated pathways and evaluate their association with prognostic gene signatures in human cirrhosis.
Results: Depletion of β-PDGFR in hepatic stellate cells decreased injury and fibrosis in vivo, while its auto-activation accelerated fibrosis. However, there was no difference in development of DEN-induced pre-neoplastic foci. Genomic profiling revealed ERK, AKT, and NF-κB pathways and a subset of a previously identified 186-gene prognostic signature in hepatitis C virus (HCV)-related cirrhosis as downstream of β-PDGFR in stellate cells. In the human cohort, the β-PDGFR signature was not associated with HCC development, but was significantly associated with a poorer outcome in HCV cirrhosis.
Conclusions: β-PDGFR is a key mediator of hepatic injury and fibrogenesis in vivo and contributes to the poor prognosis of human cirrhosis, but not by increasing HCC development.
Keywords: Cirrhosis; Gene expression signatures; HCC; Pathway analysis; Receptor tyrosine kinase.
Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
The authors disclose no conflicts.
Figures




References
-
- Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci. 2002;7:d1720–d1726. - PubMed
-
- Seifert RA, Hart CE, Phillips PE, Forstrom JW, Ross R, Murray MJ, et al. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J Biol Chem. 1989;264(15):8771–8778. - PubMed
-
- Donovan J, Abraham D, Norman J. Platelet-derived growth factor signaling in mesenchymal cells. Front Biosci (Landmark Ed) 2013;18:106–119. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous