Improved one-pot multienzyme (OPME) systems for synthesizing UDP-uronic acids and glucuronides
- PMID: 25686901
- PMCID: PMC4348237
- DOI: 10.1039/c4cc10306h
Improved one-pot multienzyme (OPME) systems for synthesizing UDP-uronic acids and glucuronides
Abstract
Arabidopsis thaliana glucuronokinase (AtGlcAK) was cloned and shown to be able to use various uronic acids as substrates to produce the corresponding uronic acid-1-phosphates. AtGlcAK or Bifidobacterium infantis galactokinase (BiGalK) was used with a UDP-sugar pyrophosphorylase, an inorganic pyrophosphatase, with or without a glycosyltransferase for highly efficient synthesis of UDP-uronic acids and glucuronides. These improved cost-effective one-pot multienzyme (OPME) systems avoid the use of nicotinamide adenine dinucleotide (NAD(+))-cofactor in dehydrogenase-dependent UDP-glucuronic acid production processes and can be broadly applied for synthesizing various glucuronic acid-containing molecules.
Figures


Similar articles
-
Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP).Chem Commun (Camb). 2012 Mar 11;48(21):2728-30. doi: 10.1039/c2cc17577k. Epub 2012 Feb 3. Chem Commun (Camb). 2012. PMID: 22306833
-
Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives.Chem Commun (Camb). 2015 May 4;51(36):7689-92. doi: 10.1039/c5cc01330e. Chem Commun (Camb). 2015. PMID: 25848722
-
Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA.Carbohydr Res. 2015 Jun 26;411:1-5. doi: 10.1016/j.carres.2015.04.001. Epub 2015 Apr 16. Carbohydr Res. 2015. PMID: 25942062 Free PMC article.
-
Uronic acids in oligosaccharide and glycoconjugate synthesis.Top Curr Chem. 2011;301:253-89. doi: 10.1007/128_2010_111. Top Curr Chem. 2011. PMID: 21222193 Review.
-
2-Oxoglycosyl ("ulosyl") and 2-oximinoglycosyl bromides: versatile donors for the expedient assembly of oligosaccharides with β-D-mannose, β-L-rhamnose, N-acetyl-β-D-mannosamine, and N-acetyl-β-D-mannosaminuronic acid units.Chem Rev. 2011 Sep 14;111(9):5569-609. doi: 10.1021/cr100444b. Epub 2011 Jul 13. Chem Rev. 2011. PMID: 21751781 Review. No abstract available.
Cited by
-
Engineer P. multocida Heparosan Synthase 2 (PmHS2) for Size-Controlled Synthesis of Longer Heparosan Oligosaccharides.ACS Catal. 2020 Jun 5;10(11):6113-6118. doi: 10.1021/acscatal.0c01231. Epub 2020 May 11. ACS Catal. 2020. PMID: 33520345 Free PMC article.
-
Metabolic labeling of the bacterial peptidoglycan by functionalized glucosamine.iScience. 2022 Jul 12;25(8):104753. doi: 10.1016/j.isci.2022.104753. eCollection 2022 Aug 19. iScience. 2022. PMID: 35942089 Free PMC article.
-
Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology.Food Sci Biotechnol. 2021 Aug 3;30(10):1277-1291. doi: 10.1007/s10068-021-00957-1. eCollection 2021 Oct. Food Sci Biotechnol. 2021. PMID: 34721924 Free PMC article. Review.
-
Nucleotide Sugars in Chemistry and Biology.Molecules. 2020 Dec 6;25(23):5755. doi: 10.3390/molecules25235755. Molecules. 2020. PMID: 33291296 Free PMC article. Review.
-
Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach.Int J Mol Sci. 2019 Oct 23;20(21):5263. doi: 10.3390/ijms20215263. Int J Mol Sci. 2019. PMID: 31652818 Free PMC article. Review.
References
-
- Rowland A, Miners JO, Mackenzie PI. Int J Biochem Cell Biol. 2013;45:1121–1132. - PubMed
-
- Peng F, Bian J, Peng P, Xiao H, Ren JL, Xu F, Sun RC. J Agric Food Chem. 2012;60:4039–4047. - PubMed
-
- Habibi Y, Vignon MR. Carbohydr Res. 2005;340:1431–1436. - PubMed
-
- Ray B, Loutelier-Bourhis C, Lange C, Condamine E, Driouich A, Lerouge P. Carbohydr Res. 2004;339:201–208. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases