Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr:49:648-655.
doi: 10.1016/j.msec.2015.01.066. Epub 2015 Jan 20.

Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties

Affiliations

Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties

Md Minhajul Islam et al. Mater Sci Eng C Mater Biol Appl. 2015 Apr.

Abstract

Biodegradable porous hybrid polymer composites were prepared by using gelatin as base polymer matrix, β-tricalcium phosphate (TCP) and calcium sulfate (CS) as cementing materials, chitosan as an antimicrobial agent, and glutaraldehyde and polyethylene glycol (PEG) as crosslinkers at different mass ratios. Thereafter, the composites were subjected to γ-radiation sterilization. The structure and properties of these composite scaffolds were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), mechanical properties testing (compressive, bending, tensile and impact), thermogravimetry/differential thermal analysis (TG/DTA), and physical stability test in simulated body fluid (SBF). We found that TCP rich composites showed enhanced mechanical properties among all the crosslinked composites. γ-Radiation sterilization triggered further cross linking in polymer matrix resulting a decrease in pore size of the composites and an increase in pore wall thickness with improved mechanical and thermal properties. The chemically crosslinked composite with 40% TCP followed by γ-radiation sterilization showed the smallest pore size distribution with a mean pore diameter of 159.22μm, which falls in the range of 100-350μm - known to be suitable for osteoconduction. Considering its improved mechanical and thermal properties along with osteoconduction ability without cytotoxicity, we propose this biocomposite as a viable candidate for bone tissue engineering.

Keywords: Biocomposite; Bone tissue engineering; Chitosan; Gelatin; γ-Radiation sterilization.

PubMed Disclaimer

MeSH terms

LinkOut - more resources