Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May;128(5):851-64.
doi: 10.1007/s00122-015-2475-3. Epub 2015 Feb 18.

Genome-wide association analysis reveals new targets for carotenoid biofortification in maize

Affiliations

Genome-wide association analysis reveals new targets for carotenoid biofortification in maize

Willy B Suwarno et al. Theor Appl Genet. 2015 May.

Abstract

Genome-wide association analysis in CIMMYT's association panel revealed new favorable native genomic variations in/nearby important genes such as hydroxylases and CCD1 that have potential for carotenoid biofortification in maize. Genome-wide association studies (GWAS) have been used extensively to identify allelic variation for genes controlling important agronomic and nutritional traits in plants. Provitamin A (proVA) enhancing alleles of lycopene epsilon cyclase (LCYE) and β-carotene hydroxylase 1 (CRTRB1), previously identified through candidate-gene based GWAS, are currently used in CIMMYT's maize breeding program. The objective of this study was to identify genes or genomic regions controlling variation for carotenoid concentrations in grain for CIMMYT's carotenoid association mapping panel of 380 inbred maize lines, using high-density genome-wide platforms with ~476,000 SNP markers. Population structure effects were minimized by adjustments using principal components and kinship matrix with mixed models. Genome-wide linkage disequilibrium (LD) analysis indicated faster LD decay (3.9 kb; r (2) = 0.1) than commonly reported for temperate germplasm, and therefore the possibility of achieving higher mapping resolution with our mostly tropical diversity panel. GWAS for various carotenoids identified CRTRB1, LCYE and other key genes or genomic regions that govern rate-critical steps in the upstream pathway, such as DXS1, GGPS1, and GGPS2 that are known to play important roles in the accumulation of precursor isoprenoids as well as downstream genes HYD5, CCD1, and ZEP1, which are involved in hydroxylation and carotenoid degradation. SNPs at or near all of these regions were identified and may be useful target regions for carotenoid biofortification breeding efforts in maize; for example a genomic region on chromosome 2 explained ~16% of the phenotypic variance for β-carotene independently of CRTRB1, and a variant of CCD1 that resulted in reduced β-cryptoxanthin degradation was found in lines that have previously been observed to have low proVA degradation rates.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Principal coordinate analysis plot based on the GBS + 55 K data, color-labeled based on the K-means clustering results. Black, red, and green color represent group 1 (tropical heterotic group B lines), 2 (provitamin A source lines), and 3 (tropical heterotic group A lines), respectively
Fig. 2
Fig. 2
GWAS manhattan plots using the mixed linear (G+Q+K) model and the 55 K + GBS combined genotype data. QPM quality protein maize (binary phenotype), ZEA zeaxanthin, L:Z lutein:zeaxanthin ratio, BCX β-cryptoxanthin, BC1 β-carotene, BC2 β-carotene with the S10_135911532 marker as an additional covariate in the model. All carotenoids’ phenotypic values (y) were transformed to log10(y + 1) prior to analyses

References

    1. Arango J, Jourdan M, Geoffriau E, Beyer P, Welsch R. Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. Plant Cell. 2014;26:2223–2233. doi: 10.1105/tpc.113.122127. - DOI - PMC - PubMed
    1. Atlin GN, Palacios N, Babu R, Das B, Twumasi-Afriyie S, Friesen DK, De Groote H, Vivek B, Pixley KV. Quality protein maize: progress and prospects. Plant Breed Rev. 2011
    1. Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ. Characterization of three members of the arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 2006;45:982–993. doi: 10.1111/j.1365-313X.2006.02666.x. - DOI - PubMed
    1. Babu R, Rojas NP, Gao S, Yan J, Pixley K. Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor Appl Genet. 2013;126:389–399. doi: 10.1007/s00122-012-1987-3. - DOI - PMC - PubMed
    1. Bishop DT, Williamson JA. The power of identity-by-state methods for linkage analysis. Am J Hum Genet. 1990;46:254–265. - PMC - PubMed

Publication types

LinkOut - more resources