Effects of envelope bandwidth on importance functions for cochlear implant simulations
- PMID: 25698008
- DOI: 10.1121/1.4906260
Effects of envelope bandwidth on importance functions for cochlear implant simulations
Abstract
Frequency-importance functions (FIFs) quantify intelligibility contributions of spectral regions of speech. In previous work, FIFs were considered as instruments for characterizing intelligibility contributions of individual cochlear implant electrode channels. Comparisons of FIFs for natural speech and vocoder-simulated implant processed speech showed that vocoding shifted peak importance regions downward in frequency by 0.5 octaves. These shifts were attributed to voicing cue changes, and may reflect increased reliance on low-frequency information (apart from periodicity cues) for correct voicing perception. The purpose of this study was to determine whether increasing channel envelope bandwidth would reverse these shifts by improving access to voicing and pitch cues. Importance functions were measured for 48 subjects with normal hearing, who listened to vowel-consonant-vowel tokens either as recorded or as output from five different vocoders that simulated implant processing. Envelopes were constructed using filters that either included or excluded pitch information. Results indicate that vocoding-based shifts are only partially counteracted by including pitch information; moreover, a substantial baseline shift is present even for vocoders with high spectral resolution. The results also suggest that vocoded speech intelligibility is most sensitive to a loss of spectral resolution in high-importance regions, a finding with possible implications for cochlear implant electrode mapping.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical