Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 18;137(10):3638-48.
doi: 10.1021/jacs.5b00281. Epub 2015 Mar 4.

Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism

Affiliations
Free article

Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism

Michaela S Burke et al. J Am Chem Soc. .
Free article

Abstract

Cobalt oxides and (oxy)hydroxides have been widely studied as electrocatalysts for the oxygen evolution reaction (OER). For related Ni-based materials, the addition of Fe dramatically enhances OER activity. The role of Fe in Co-based materials is not well-documented. We show that the intrinsic OER activity of Co(1-x)Fe(x)(OOH) is ∼100-fold higher for x ≈ 0.6-0.7 than for x = 0 on a per-metal turnover frequency basis. Fe-free CoOOH absorbs Fe from electrolyte impurities if the electrolyte is not rigorously purified. Fe incorporation and increased activity correlate with an anodic shift in the nominally Co(2+/3+) redox wave, indicating strong electronic interactions between the two elements and likely substitutional doping of Fe for Co. In situ electrical measurements show that Co(1-x)Fe(x)(OOH) is conductive under OER conditions (∼0.7-4 mS cm(-1) at ∼300 mV overpotential), but that FeOOH is an insulator with measurable conductivity (2.2 × 10(-2) mS cm(-1)) only at high overpotentials >400 mV. The apparent OER activity of FeOOH is thus limited by low conductivity. Microbalance measurements show that films with x ≥ 0.54 (i.e., Fe-rich) dissolve in 1 M KOH electrolyte under OER conditions. For x < 0.54, the films appear chemically stable, but the OER activity decreases by 16-62% over 2 h, likely due to conversion into denser, oxide-like phases. We thus hypothesize that Fe is the most-active site in the catalyst, while CoOOH primarily provides a conductive, high-surface area, chemically stabilizing host. These results are important as Fe-containing Co- and Ni-(oxy)hydroxides are the fastest OER catalysts known.

PubMed Disclaimer