Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep 5;264(25):14735-40.

Accumulation of cAMP and calcium in S49 mouse lymphoma cells following hyposmotic swelling

Affiliations
  • PMID: 2570067
Free article

Accumulation of cAMP and calcium in S49 mouse lymphoma cells following hyposmotic swelling

P A Watson. J Biol Chem. .
Free article

Abstract

Swelling of S49 "wild type" mouse lymphoma cells in hyposmolar medium was used to examine the effects of cellular deformation on cAMP metabolism. In S49 wild type mouse lymphoma cells incubated in a defined medium, progressive reductions in medium osmolarity of 5-50% resulted in proportionate expansion of cell volume. Increases in cell volume were accompanied by incremental increases in intracellular cAMP and calcium. These responses in S49 cells occurred rapidly, with increases in calcium concentration and cAMP content occurring within 1-2 min. Swelling of S49 cells in the absence of ions (hyposmolar versus normosmolar sorbitol) resulted in a significant accumulation of cAMP. Inclusion of papaverine or isobutyl methylxanthine amplified cAMP accumulation, and omission of calcium, sodium, or magnesium from the medium attenuated, but did not prevent accumulation of cAMP in S49 cells in response to swelling. Exposure to propranolol or nadolol attenuated the ability of swelling to increase cAMP concentration, while treatment with 2',5'-dideoxyadenosine or phentolamine had no effect on swelling-induced cAMP accumulation. It is concluded that cellular deformation of S49 wild type mouse lymphoma cells stimulates rapid accumulation of intracellular calcium and cAMP.

PubMed Disclaimer

LinkOut - more resources