Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 30:292:71-80.
doi: 10.1016/j.neuroscience.2015.02.024. Epub 2015 Feb 18.

In vivo analysis of neuroinflammation in the late chronic phase after experimental stroke

Affiliations

In vivo analysis of neuroinflammation in the late chronic phase after experimental stroke

H L Walter et al. Neuroscience. .

Abstract

Background and purpose: In vivo imaging of inflammatory processes is a valuable tool in stroke research. We here investigated the combination of two imaging modalities in the chronic phase after cerebral ischemia: magnetic resonance imaging (MRI) using intravenously applied ultra small supraparamagnetic iron oxide particles (USPIO), and positron emission tomography (PET) with the tracer [(11)C]PK11195.

Methods: Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) by the macrosphere model and monitored by MRI and PET for 28 or 56 days, followed by immunohistochemical endpoint analysis. To our knowledge, this is the first study providing USPIO-MRI data in the chronic phase up to 8 weeks after stroke.

Results: Phagocytes with internalized USPIOs induced MRI-T2(∗) signal alterations in the brain. Combined analysis with [(11)C]PK11195-PET allowed quantification of phagocytic activity and other neuroinflammatory processes. From 4 weeks after induction of ischemia, inflammation was dominated by phagocytes. Immunohistochemistry revealed colocalization of Iba1+ microglia with [(11)C]PK11195 and ED1/CD68 with USPIOs. USPIO-related iron was distinguished from alternatively deposited iron by assessing MRI before and after USPIO application. Tissue affected by non-phagocytic inflammation during the first week mostly remained in a viably vital but remodeled state after 4 or 8 weeks, while phagocytic activity was associated with severe injury and necrosis accordingly.

Conclusions: We conclude that the combined approach of USPIO-MRI and [(11)C]PK11195-PET allows to observe post-stroke inflammatory processes in the living animal in an intraindividual and longitudinal fashion, predicting long-term tissue fate. The non-invasive imaging methods do not affect the immune system and have been applied to human subjects before. Translation into clinical applications is therefore feasible.

Keywords: MRI; PET; chronic post-stroke phase; in vivo imaging; phagocytic activity; regional tissue fate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources