Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 1;40(9):613-21.
doi: 10.1097/BRS.0000000000000841.

Novel Protamine-Based Polyelectrolyte Carrier Enhances Low-Dose rhBMP-2 in Posterolateral Spinal Fusion

Affiliations

Novel Protamine-Based Polyelectrolyte Carrier Enhances Low-Dose rhBMP-2 in Posterolateral Spinal Fusion

Tao Hu et al. Spine (Phila Pa 1976). .

Abstract

Study design: A rodent posterolateral spinal fusion model.

Objective: This study evaluated a protamine-based polyelectrolyte complex (PEC) developed to use heparin in enhancing the biological activity of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion.

Summary of background data: rhBMP-2 is commonly regarded as the most potent bone-inducing molecule. However, poor pharmacokinetics and short in vivo half-life means that large amounts of the bioactive growth factor are required for consistent clinical outcomes. This has been associated with a number of adverse tissue reactions including seroma and heterotopic ossification. Glycosaminoglycans including heparin are known to stabilize rhBMP-2 bioactivity. Previous studies with poly-L-lysine (PLL) and heparin-based PEC carriers amplified the therapeutic efficacy of low-dose BMP-2. However, questions remained on the eventual clinical applicability of relatively cytotoxic PLL. In the present study, a protamine-based PEC carrier was designed to further enhance the safety and efficacy of BMP-2 by delivering lower dose within the therapeutic window.

Methods: A polyelectrolyte shell was deposited on the surface of alginate microbead templates using the polycation (protamine)/polyanion (heparin) layer-by-layer polyelectrolyte self-assembly protocol. rhBMP-2 was loaded onto the outermost layer via heparin affinity binding. Loading and release of rhBMP-2 were evaluated in vitro. The bone-inductive ability of 20-fold reduction of rhBMP-2 with the different carrier vehicle was evaluated using a posterolateral spinal fusion model in rats.

Results: In vitro uptake and release analysis, protamine-based PEC showed higher uptake and significantly enhanced control release than PLL-based PEC (P < 0.05). In vivo implantation with protamine-based and PLL-based PEC showed better fusion performances than absorbable collagen sponge-delivered same dose of rhBMP-2, and negative control group through manual palpation, micro-computed tomography, and histological analyses.

Conclusion: Solid posterolateral spinal fusion was achieved with 20-fold reduction of rhBMP-2 when delivered using protamine-based PEC carrier in the rat posterolateral spinal fusion model.

Level of evidence: N/A.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms