Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 2;3(1):3.
doi: 10.1186/s40462-015-0029-6. eCollection 2015.

Mapping migratory flyways in Asia using dynamic Brownian bridge movement models

Affiliations

Mapping migratory flyways in Asia using dynamic Brownian bridge movement models

Eric C Palm et al. Mov Ecol. .

Abstract

Background: Identifying movement routes and stopover sites is necessary for developing effective management and conservation strategies for migratory animals. In the case of migratory birds, a collection of migration routes, known as a flyway, is often hundreds to thousands of kilometers long and can extend across political boundaries. Flyways encompass the entire geographic range between the breeding and non-breeding areas of a population, species, or a group of species, and they provide spatial frameworks for management and conservation across international borders. Existing flyway maps are largely qualitative accounts based on band returns and survey data rather than observed movement routes. In this study, we use satellite and GPS telemetry data and dynamic Brownian bridge movement models to build upon existing maps and describe waterfowl space use probabilistically in the Central Asian and East Asian-Australasian Flyways.

Results: Our approach provided new information on migratory routes that was not easily attainable with existing methods to describe flyways. Utilization distributions from dynamic Brownian bridge movement models identified key staging and stopover sites, migration corridors and general flyway outlines in the Central Asian and East Asian-Australasian Flyways. A map of space use from ruddy shelducks depicted two separate movement corridors within the Central Asian Flyway, likely representing two distinct populations that show relatively strong connectivity between breeding and wintering areas. Bar-headed geese marked at seven locations in the Central Asian Flyway showed heaviest use at several stopover sites in the same general region of high-elevation lakes along the eastern Qinghai-Tibetan Plateau. Our analysis of data from multiple Anatidae species marked at sites throughout Asia highlighted major movement corridors across species and confirmed that the Central Asian and East Asian-Australasian Flyways were spatially distinct.

Conclusions: The dynamic Brownian bridge movement model improves our understanding of flyways by estimating relative use of regions in the flyway while providing detailed, quantitative information on migration timing and population connectivity including uncertainty between locations. This model effectively quantifies the relative importance of different migration corridors and stopover sites and may help prioritize specific areas in flyways for conservation of waterbird populations.

Keywords: Dynamic Brownian bridge movement model; Flyways; Habitat conservation; Migration; Space use; Stopover sites; Waterfowl.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Estimated migration routes and relative use of ruddy shelducks (RUSH) by population in the CAF. Data groupings based on geographic proximity of marking sites. From darkest to lightest, colors represent 50%, 75% and 99% cumulative probability contours. Marking sites include Qinghai Lake, China (QL), Brahmaputra River, India (BR), Hakaluki Haor, Bangladesh (HH) and Chilika Lake, India (CL). The western (green) route shows relative use for RUSH marked in northeast India and Bangladesh. The eastern (yellow-red) route shows relative use for RUSH marked at Qinghai Lake, China. Dotted lines represent the RUSH population-level range outlines depicted in Miyabayashi and Mundkur [16].
Figure 2
Figure 2
Estimated migration route and relative use of bar-headed geese (BHGO) in the CAF. From darkest to lightest, colors represent 50%, 75% and 99% cumulative probability contours. Marking sites include Terkiin Tsagaan Lake, Mongolia (TT), Qinghai Lake, China (QL), Chitwan National Park, Nepal (CP), Pong Dam, India (PD), Keoladeo National Park, India (KP), Chilika Lake, India (CL) and Koonthankulam, India (KT). The dotted line represents the BHGO range outlines depicted in Miyabayashi and Mundkur [16].
Figure 3
Figure 3
Estimated migration routes of Anatidae in the CAF and EAAF. Relative use for CAF displayed in yellow-red and relative use for EAAF displayed in blue-purple. From darkest to lightest, colors represent 50%, 75% and 99% cumulative probability contours. CAF marking sites include Terkiin Tsagaan Lake, Mongolia (TT), Qinghai Lake, China (QL), Chitwan National Park, Nepal (CP), Pong Dam, India (PD), Keoladeo National Park, India (KP), Brahmaputra River, India (BR), Hakaluki Haor, Bangladesh (HH), West Bengal, India (WB), Chilika Lake, India (CL) and Koonthankulam, India (KT). EAAF marking sites include Mai Po, China (MP), Poyang Lake, China (PL) and Delger Tsagaan Lake, Mongolia (DT). Dotted lines represent CAF and EEAF flyway outlines depicted in Miyabayashi and Mundkur [16].

Similar articles

Cited by

References

    1. Hutto RL. On the importance of en route periods to the conservation of migratory landbirds. Stud Avian Biol. 2000;20:109–14.
    1. Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA, Heglund P, Hobson KA, Jahn AE, Johnson DH, Latta SC, Levey DJ, Marra PP, Merkord CL, Nol E, Rothstein SI, Sherry TW, Sillett TS, Thompson FR, III, Warnock N. Recent advances in understanding migration systems of New World land birds. Ecol Monogr. 2010;80:3–48. doi: 10.1890/09-0395.1. - DOI - PubMed
    1. Newton I. The Migration Ecology of Birds. San Francisco, CA: Academic Press; 2008.
    1. Sillett TS, Holmes RT. Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol. 2002;71:296–308. doi: 10.1046/j.1365-2656.2002.00599.x. - DOI
    1. Bonter DN, Gauthreaux SA, Donovan TM. Characteristics of important stopover locations for migrating birds: Remote sensing with radar in the Great Lakes Basin. Conserv Biol. 2009;23:440–8. doi: 10.1111/j.1523-1739.2008.01085.x. - DOI - PubMed

LinkOut - more resources