Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 11;137(9):3237-40.
doi: 10.1021/jacs.5b01909. Epub 2015 Mar 2.

Enantioselective cross-coupling of meso-epoxides with aryl halides

Affiliations

Enantioselective cross-coupling of meso-epoxides with aryl halides

Yang Zhao et al. J Am Chem Soc. .

Abstract

The first enantioselective cross-electrophile coupling of aryl bromides with meso-epoxides to form trans-β-arylcycloalkanols is presented. The reaction is catalyzed by a combination of (bpy)NiCl2 and a chiral titanocene under reducing conditions. Yields range from 57 to 99% with 78-95% enantiomeric excess. The 30 examples include a variety of functional groups (ether, ester, ketone, nitrile, ketal, trifluoromethyl, sulfonamide, sulfonate ester), both aryl and vinyl halides, and five- to seven-membered rings. The intermediacy of a carbon radical is strongly suggested by the conversion of cyclooctene monoxide to an aryl [3.3.0]bicyclooctanol.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Enantioselective Arylation of meso-Epoxides
Scheme 2
Scheme 2. Enantioselective Arylation of Cyclohexene Oxide
Reactions were run with 1.0:2.0:0.1:0.1:0.1 Et3N·HCl/Mn0/titanocene/NiCl2(dme)/bipyridine in DMPU with stirring for 12 h at rt. Assay yields (GC area %) are shown, with an isolated yield in parentheses. Enantiomeric excesses were determined by chiral-phase GC or SFC analysis.
Scheme 3
Scheme 3. Epoxide and Aryl Halide Scope
As in Scheme 2 footnote a. The yield in parentheses is for a racemate obtained with catalyst 1. The absolute configuration of 13 was determined by X-ray analysis (see the Supporting Information). Other products were assigned by analogy. The same reaction conducted with 3 equiv of Mn was finished in 4 h vs 8 h (see Table S1 in the Supporting Information).
Scheme 4
Scheme 4. Aryl Halide Scope
As in Scheme 2, footnote a. Extended reaction time resulted in hydrodehalogenation of the product. Product was isolated after 7 h. Product was isolated after 7.5 h.
Scheme 5
Scheme 5. Formation of [3.3.0]Bicyclooctanol Products from Cyclooctadiene Monoxide
As in Scheme 2, footnote a. Absolute configurations were assigned by X-ray analysis of camphanic acid esters.
Scheme 6
Scheme 6. Proposed Catalytic Cycle

References

    1. Nielsen L. P. C.; Jacobsen E. N.. Catalytic Asymmetric Epoxide Ring-Opening Chemistry. In Aziridines and Epoxides in Organic Synthesis; Yudin A. K., Ed.; Wiley-VCH: Weinheim, Germany, 2006; Chapter 7, pp 229–269.
    2. Huang C.-Y.; Doyle A. G. Chem. Rev. 2014, 114, 8153–8198. - PubMed
    1. Jacobsen E. N. Acc. Chem. Res. 2000, 33, 421–431. - PubMed
    2. Martínez L. E.; Leighton J. L.; Carsten D. H.; Jacobsen E. N. J. Am. Chem. Soc. 1995, 117, 5897–5898.
    3. Jacobsen E. N.; Kakiuchi F.; Konsler R. G.; Larrow J. F.; Tokunaga M. Tetrahedron Lett. 1997, 38, 773–776.
    4. Tao B.; Lo M. M.-C.; Fu G. C. J. Am. Chem. Soc. 2001, 123, 353–354. - PubMed
    5. Bartoli G.; Bosco M.; Carlone A.; Locatelli M.; Massaccesi M.; Melchiorre P.; Sambri L. Org. Lett. 2004, 6, 2173–2176. - PubMed
    6. Kalow J. A.; Doyle A. G. J. Am. Chem. Soc. 2010, 132, 3268–3269. - PubMed
    7. Nielsen L. P. C.; Zuend S. J.; Ford D. D.; Jacobsen E. N. J. Org. Chem. 2012, 77, 2486–2495. - PMC - PubMed
    8. Ingle G.; Mormino M. G.; Antilla J. C. Org. Lett. 2014, 16, 5548–5551. - PMC - PubMed
    9. Liu Y.; Ren W.-M.; Liu J.; Lu X.-B. Angew. Chem., Int. Ed. 2013, 52, 11594–11598. - PubMed
    10. Ellis W. C.; Jung Y.; Mulzer M.; Di Girolamo R.; Lobkovsky E. B.; Coates G. W. Chem. Sci. 2014, 5, 4004–4011.
    1. Ganji P.; Ibrahim H. Chem. Commun. 2012, 48, 10138–10140. - PubMed
    2. Mulzer M.; Lamb J. R.; Nelson Z.; Coates G. W. Chem. Commun. 2014, 50, 9842–9845. - PubMed
    1. Cole B. M.; Shimizu K. D.; Krueger C. A.; Harrity J. P. A.; Snapper M. L.; Hoveyda A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668–1671.
    2. Shimizu K. D.; Cole B. M.; Krueger C. A.; Kuntz K. W.; Snapper M. L.; Hoveyda A. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1704–1707.
    3. Schaus S. E.; Jacobsen E. N. Org. Lett. 2000, 2, 1001–1004. - PubMed
    4. Palkulski Z.; Pietrusiewicz K. M. Tetrahedron: Asymmetry 2004, 15, 41–45.
    1. For a review of transition-metal-catalyzed cross-coupling with epoxides, see ref (1b). Although no enantioselective examples have been reported, several enantiospecific reactions are known.

Publication types

LinkOut - more resources