Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2015 Feb 27;10(2):e0117865.
doi: 10.1371/journal.pone.0117865. eCollection 2015.

Endocrine determinants of changes in insulin sensitivity and insulin secretion during a weight cycle in healthy men

Affiliations
Randomized Controlled Trial

Endocrine determinants of changes in insulin sensitivity and insulin secretion during a weight cycle in healthy men

Judith Karschin et al. PLoS One. .

Abstract

Objective: Changes in insulin sensitivity (IS) and insulin secretion occur with perturbations in energy balance and glycemic load (GL) of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear.

Methods: In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2) followed 1wk of overfeeding (OF), 3wks of caloric restriction (CR) containing either 50% or 65% carbohydrate (CHO) and 2wks of refeeding (RF) with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI), insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose) and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion) were assessed.

Results: IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05). Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05) whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05) and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only). After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant.

Conclusion: Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and ghrelin seem to be the major endocrine determinants of IS, leptin/adiponectin-ratio and fT4 levels may impact changes in insulin secretion with weight cycling.

Trial registration: ClinicalTrials.gov NCT01737034.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. CONSORT flow chart, showing the passage of participants through the different stages of the present trial: enrollment, first allocation after OF to the 65%CHO and 50%CHO intervention and second allocation after CR to 65%CHO-HGI, 65%CHO-LGI, 50%CHO-HGI and 50%CHO-LGI intervention, follow-up, and analysis.
OF, overfeeding; CR, caloric restriction; CHO: carbohydrate, HGI, high glyceamic index; LGI, low glyceamic index
Fig 2
Fig 2. Schematic overview of the study protocol.
OGTT, oral glucose tolerance test, CHO, carbohydrate; LGI, low glycaemic index; HGI, high glycaemic index
Fig 3
Fig 3. Comparison between fasting insulin level, IS (HOMA-index and Matsuda-ISI) as well as insulin secretion (insulin-iAUC, insulin-tAUC/glucose-tAUC, Stumvoll-index) at baseline (T0), after caloric restriction (CR, T2) and refeeding (RF, T3).
*p<0.05, **p<0.01, ***p<0.001; Repeated measures ANOVA with Bonferroni adjustments. HOMA, homeostasis model assessment; ISI, insulin sensitivity index, iAUC, incremental area under the curve; tAUC, total area under the curve

References

    1. Adochio RL, Leitner JW, Gray K, Draznin B, Cornier M-A (2009) Early responses of insulin signaling to high-carbohydrate and high-fat overfeeding. Nutr Metab (Lond) 6: 37 10.1186/1743-7075-6-37 - DOI - PMC - PubMed
    1. Lagerpusch M, Bosy-Westphal A, Kehden B, Peters A, Müller MJ (2012) Effects of brief perturbations in energy balance on indices of glucose homeostasis in healthy lean men. Int J Obes 36: 1094–1101. 10.1038/ijo.2011.211 - DOI - PubMed
    1. Lagerpusch M, Enderle J, Later W, Eggeling B, Pape D, et al. (2013) Impact of glycaemic index and dietary fibre on insulin sensitivity during the refeeding phase of a weight cycle in young healthy men. Br J Nutr 109: 1606–1616. 10.1017/S000711451200462X - DOI - PubMed
    1. Brands M, Swat M (2013) Effects of a hypercaloric diet on β‐cell responsivity in lean healthy men. Clin Endocrinol (Oxf). - PubMed
    1. Hamm P, Shekelle RB, Stamler J (1989) Large fluctuations in body weight during young adulthood and twenty-five-year risk of coronary death in men. Am J Epidemiol 129: 312–318. - PubMed

Publication types

Associated data