Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 28;17(12):8097-105.
doi: 10.1039/c4cp04455j.

Molecular structure and thermal stability of the oxide-supported phosphotungstic Wells-Dawson heteropolyacid

Affiliations

Molecular structure and thermal stability of the oxide-supported phosphotungstic Wells-Dawson heteropolyacid

Silvana R Matkovic et al. Phys Chem Chem Phys. .

Abstract

We present, for the first time in the literature, a systematic study of the molecular structure of the Wells-Dawson heteropolyacid H6P2W18O62·24H2O (HPA) dispersed on TiO2, SiO2, ZrO2 and Al2O3. The heteropolyacid-based materials were synthesized through a conventional impregnation method (in aqueous and ethanol media) at a loading that corresponds to the theoretical "monolayer" coverage (dispersion limit loading). The combination of Raman and infrared studies demonstrates the presence of crystals of HPA (regardless of the nature of the medium used during the synthesis) suggesting that the dispersion limit loading was greatly exceeded. In situ temperature programmed spectroscopy analyses demonstrated that the Raman shift of the distinctive W[double bond, length as m-dash]O Raman mode of the phosphotungstic Wells-Dawson heteropolyacid is sensitive to the local environment, that is, the amount of water molecules associated with the structure. Moreover, the aqueous based species associated with such structures are recognizable through infrared spectroscopy.

PubMed Disclaimer

LinkOut - more resources