Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 3;10(3):e0117403.
doi: 10.1371/journal.pone.0117403. eCollection 2015.

Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis

Affiliations

Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis

Steffan D Bos et al. PLoS One. .

Abstract

Objective: Determine whether MS-specific DNA methylation profiles can be identified in whole blood or purified immune cells from untreated MS patients.

Methods: Whole blood, CD4+ and CD8+ T cell DNA from 16 female, treatment naïve MS patients and 14 matched controls was profiled using the HumanMethylation450K BeadChip. Genotype data were used to assess genetic homogeneity of our sample and to exclude potential SNP-induced DNA methylation measurement errors.

Results: As expected, significant differences between CD4+ T cells, CD8+ T cells and whole blood DNA methylation profiles were observed, regardless of disease status. Strong evidence for hypermethylation of CD8+ T cell, but not CD4+ T cell or whole blood DNA in MS patients compared to controls was observed. Genome-wide significant individual CpG-site DNA methylation differences were not identified. Furthermore, significant differences in gene DNA methylation of 148 established MS-associated risk genes were not observed.

Conclusion: While genome-wide significant DNA methylation differences were not detected for individual CpG-sites, strong evidence for DNA hypermethylation of CD8+ T cells for MS patients was observed, indicating a role for DNA methylation in MS. Further, our results suggest that large DNA methylation differences for CpG-sites tested here do not contribute to MS susceptibility. In particular, large DNA methylation differences for CpG-sites within 148 established MS candidate genes tested in our study cannot explain missing heritability. Larger studies of homogenous MS patients and matched controls are warranted to further elucidate the impact of CD8+ T cell and more subtle DNA methylation changes in MS development and pathogenesis.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Principal component analyses.
For samples in analyses a PCA was performed on overall methylation levels of CpG-sites that passed both quality controls and SNP filtering in (A) whole blood (Red), CD4+ T cells (Blue) and CD8+ T cells (Magenta) for all cases (squares) and controls (triangles). (B) PCA of DNA methylation data from whole blood only. (C) PCA of DNA methylation data from CD4+ T cells only. (D) PCA of DNA methylation data from CD8+ T cells only.
Fig 2
Fig 2. Pie charts of overall methylation levels for the three sample types.
A. Pie-charts of DNA hyper- and hypomethylation for all CpG sites with p-values less then or equal to 0.05. B. Pie-charts of DNA hyper- and hypomethylation for all CpG-sites with p-values above 0.05. Abbreviations: Hypo – hypomethylation, Hyper – hypermethylation, CD4 – CD4+ T cell data, CD8 – CD8+ T cell data, WB – whole blood data.

References

    1. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372: 1502–1517. 10.1016/S0140-6736(08)61620-7 - DOI - PubMed
    1. International Multiple Sclerosis Genetics Consortium (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45: 1353–1360. 10.1038/ng.2770 - DOI - PMC - PubMed
    1. Gourraud PA, Harbo HF, Hauser SL, Baranzini SE (2012) The genetics of multiple sclerosis: an up-to-date review. Immunological reviews 248: 87–103. 10.1111/j.1600-065X.2012.01134.x - DOI - PMC - PubMed
    1. International Multiple Sclerosis Genetics Consortium (2013) Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet 92: 854–865. 10.1016/j.ajhg.2013.04.019 - DOI - PMC - PubMed
    1. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, et al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337: 1190–1195. 10.1126/science.1222794 - DOI - PMC - PubMed

Publication types

MeSH terms