Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul-Sep;34(1):33-8.
doi: 10.4103/0257-7941.150777.

In vitro evaluation of anti-herpes simplex-1 activity of three standardized medicinal plants from Lamiaceae

Affiliations

In vitro evaluation of anti-herpes simplex-1 activity of three standardized medicinal plants from Lamiaceae

Mehdi Ansari et al. Anc Sci Life. 2014 Jul-Sep.

Abstract

Background: Rosmarinic acid (RA) is a phenolic acid with antioxidant and anti-viral effects. We have studied anti-herpes simplex virus type 1 (HSV-1) effect of three medicinal plants from Lamiaceae family which have been standardized on the basis of RA content.

Materials and methods: Methanolic extract of Teucrium polium, Ziziphora clinopoides, and Salvia rhytidea was prepared by maceration method and RA content of the plants was determined using a spectrophotometric method. Maximum nontoxic concentration (MNTC) of the extracts was determined using neutral red method. Serial dilutions of extracts up to MNTC were examined on Vero cells for anti-HSV-1 effect by plaque assay in comparison to acyclovir as a positive control.

Results: Among the tested extracts, T. polium contained the highest percentage of RA (1.8%w/w) and exhibited the least toxicity (MNTC = 1000 μg/ml). The greatest anti-HSV-1 was shown by T. polium and Z. clinopoides extracts which exhibited both time and concentration-dependent plaque inhibition.

Conclusion: Considering the low toxicity and significant anti-viral effect of T. polium extract, this plant would prove valuable as an active anti-viral drug.

Keywords: Herpes simplex-1; Salvia rhytidea; Teucrium polium; Ziziphora clinopoides; plaque inhibition; rosmarinic acid.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
Plaque inhibitory effect of the extracts of Teucrium polium, Ziziphora clinopoides, and Salvia rhytidea against herpes simplex virus-1. In different concentrations up to maximum nontoxic concentra-tion. Each experiment was repeated in triplicate, and the results were reported as mean ± standard deviation
Figure 2
Figure 2
Time-dependent activity of Teucrium polium extract against herpes simplex virus-1 (HSV-1). HSV-1 was incubated with different nontoxic concentrations of T. polium extract for different amounts of time. Each experiment was repeated in triplicate, and the results were reported as mean ± standard deviation
Figure 3
Figure 3
Time-dependent activity of Ziziphora clinopoides extract against herpes simplex virus-1 (HSV-1). HSV-1 was incubated with different nontoxic concentrations of Z. clinopoides extract for different amounts of time. Each experiment was repeated in triplicate, and the results were reported as mean ± standard deviation

References

    1. Schnitzler P, Nolkemper S, Stintzing FC, Reichling J. Comparative in vitro study on the anti-herpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine. 2008;15:62–70. - PubMed
    1. Schuhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003;10:504–10. - PubMed
    1. De Logu A, Loy G, Pellerano ML, Bonsignore L, Schivo ML. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Res. 2000;48:177–85. - PubMed
    1. Reichling J. Plant-microbe interaction and secondary metabolites with antiviral, antibacterial and antifungal properties. In: Wink M, editor. Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology. Sheffield: Sheffield Academic Press; 1999.
    1. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother. 2007;51:3367–70. - PMC - PubMed