In vitro evaluation of anti-herpes simplex-1 activity of three standardized medicinal plants from Lamiaceae
- PMID: 25737608
- PMCID: PMC4342647
- DOI: 10.4103/0257-7941.150777
In vitro evaluation of anti-herpes simplex-1 activity of three standardized medicinal plants from Lamiaceae
Abstract
Background: Rosmarinic acid (RA) is a phenolic acid with antioxidant and anti-viral effects. We have studied anti-herpes simplex virus type 1 (HSV-1) effect of three medicinal plants from Lamiaceae family which have been standardized on the basis of RA content.
Materials and methods: Methanolic extract of Teucrium polium, Ziziphora clinopoides, and Salvia rhytidea was prepared by maceration method and RA content of the plants was determined using a spectrophotometric method. Maximum nontoxic concentration (MNTC) of the extracts was determined using neutral red method. Serial dilutions of extracts up to MNTC were examined on Vero cells for anti-HSV-1 effect by plaque assay in comparison to acyclovir as a positive control.
Results: Among the tested extracts, T. polium contained the highest percentage of RA (1.8%w/w) and exhibited the least toxicity (MNTC = 1000 μg/ml). The greatest anti-HSV-1 was shown by T. polium and Z. clinopoides extracts which exhibited both time and concentration-dependent plaque inhibition.
Conclusion: Considering the low toxicity and significant anti-viral effect of T. polium extract, this plant would prove valuable as an active anti-viral drug.
Keywords: Herpes simplex-1; Salvia rhytidea; Teucrium polium; Ziziphora clinopoides; plaque inhibition; rosmarinic acid.
Conflict of interest statement
Figures
References
-
- Schnitzler P, Nolkemper S, Stintzing FC, Reichling J. Comparative in vitro study on the anti-herpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine. 2008;15:62–70. - PubMed
-
- Schuhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003;10:504–10. - PubMed
-
- De Logu A, Loy G, Pellerano ML, Bonsignore L, Schivo ML. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Res. 2000;48:177–85. - PubMed
-
- Reichling J. Plant-microbe interaction and secondary metabolites with antiviral, antibacterial and antifungal properties. In: Wink M, editor. Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology. Sheffield: Sheffield Academic Press; 1999.
LinkOut - more resources
Full Text Sources
Other Literature Sources
