Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May;83(5):970-81.
doi: 10.1002/prot.24793. Epub 2015 Mar 25.

Microtubules dual chemo and thermo-responsive depolymerization

Affiliations

Microtubules dual chemo and thermo-responsive depolymerization

Z Li et al. Proteins. 2015 May.

Abstract

The effects of chemotherapeutic agent vinblastine versus low temperature of 277 K were investigated on the structure of αβ-tubulin heterodimer by means of molecular dynamics simulations. Individual experiments have shown that the vinblastine-bound heterodimer, and its apo structure under low temperature of 277 K, both undergo conformational changes toward destabilization of the dimer as compared to the apo tubulin at 300 K. Both factors exhibited weakening of the longitudinal interactions of tubulin heterodimer through displacing dimer interfacial segments, resulting in dominant electrostatic repulsion at the interface of the subunits. The two independent factors of temperature and anti-mitotic agent facilitate alteration of secondary structure in functional segments such as H1-S2 loop, H3, H10 helices, and T7 loop, which are known to be important in either longitudinal or lateral contacts among αβ-heterodimers in MTs protofilaments and their depolymerization mechanism.

Keywords: cancer therapy; depolymerization; microtubules assembly; molecular dynamics simulation; structural protein; temperature; tubulin heterodimer; vinblastine.

PubMed Disclaimer

Publication types