Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Sep;55(9):1053-63.
doi: 10.1002/jobm.201500031. Epub 2015 Mar 3.

Redox sensing and signaling by malaria parasite in vertebrate host

Affiliations
Review

Redox sensing and signaling by malaria parasite in vertebrate host

Satyajit Tripathy et al. J Basic Microbiol. 2015 Sep.

Abstract

Plasmodium parasites, which is responsible to cause malaria, are also exceedingly receptive to oxidative stress during their intraerythrocytic life stage as they devour haemoglobin inside their food vacuoles and engender toxic haem moieties and reactive oxygen species (ROS). Other than, several studies suggest that the generation of reactive oxygen and nitrogen species (ROS and RNS) associated with oxidative stress, plays a decisive role in the ripeness of systemic complications caused by malaria. Malaria infection provokes the generation of hydroxyl radicals (OH(•)), which most probably is the main reason for the induction of oxidative stress and apoptosis. In this study, it has been described to understand how redox molecules and NO carry out their diverse functions in both parasites and host. It is very important to understand the chemical reactions that produce those outcomes and how its regulation carried out by parasite during erythrocytic phase.

Keywords: Antioxidant; Malaria parasite; Oxidative stress; Redox.

PubMed Disclaimer

LinkOut - more resources