Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2015 May;50(5):550-2.
doi: 10.4085/1062-6050-50.1.08. Epub 2015 Mar 5.

Management of primary anterior shoulder dislocations using immobilization

Affiliations
Comment

Management of primary anterior shoulder dislocations using immobilization

Brent I Smith et al. J Athl Train. 2015 May.

Abstract

Reference/Citation : Paterson WH, Throckmorton TW, Koester M, Azar FM, Kuhn JE. Position and duration of immobilization after primary anterior shoulder dislocation: a systemic review and meta-analysis of the literature. J Bone Joint Surg Am. 2010;92(18):2924-2933.

Clinical question: Does an optimum duration and position of immobilization after primary anterior shoulder dislocation exist for reducing recurrence rates?

Data sources: MEDLINE/PubMed, EMBASE, and Cochrane databases were searched up to December 2009 without limitations. The search terms for all databases used were shoulder AND dislocation and shoulder AND immobilization.

Study selection: Criteria used to include articles were (1) English language, (2) prospective level I or level II studies (according to Journal of Bone & Joint Surgery guidelines), (3) nonoperative management of initial anterior shoulder dislocation, (4) minimum follow-up of 1 year, and (5) rate of recurrent dislocation as a reported outcome.

Data extraction: A standardized evaluation method was used to extract data to allow assessment of methods issues and statistical analysis to determine sources of bias. The primary outcome was the recurrence rate after nonoperative management of anterior shoulder dislocation. Additional data extracted and used in subanalyses included duration and position of immobilization and age at the time of initial dislocation. Data were analyzed to determine associations among groups using 2-tailed Fisher exact tests. For pooled categorical data, relative risk of recurrent dislocation, 95% confidence intervals, and heterogeneity using the I(2) statistic and χ(2) tests were calculated for individual studies. The Mantel-Haenszel method was used to combine studies and estimate overall relative risk of recurrent dislocation and 95% confidence intervals. The statistical difference between duration of immobilization and position was determined using z tests for overall effect. Pooled results were presented as forest plots.

Main results: In the initial search of the databases, the authors identified 2083 articles. A total of 9 studies met all of the criteria and were included in this review. In most of the studies, age was a risk factor for recurrence. Patients less than 30 years of age were more likely to sustain a recurrent dislocation than patients more than 30 years of age. In 5 studies (n = 1215), researchers found no difference in recurrence of shoulder dislocation when immobilized in internal rotation (IR) for less than 1 week (41%, 40 of 97) compared with more than 3 weeks (37%, 34 of 93) in patients less than 30 years of age (P = .52). Authors of 3 studies (n = 289) compared the effect of immobilization in IR versus external rotation (ER), and whereas they found no statistical difference, a trend appeared toward reduced recurrence rates in ER but not IR (P = .07). The rate of recurrent dislocation was 40% (25 of 63) in patients treated with IR sling immobilization and 25% (22 of 88) in patients immobilized in ER.

Conclusions: Overall, the investigators found that younger age (<30 years) was a predictor of recurrent dislocations, immobilization for more than 1 week did not improve recurrence rates, and an apparent trend existed toward decreased recurrence rates with ER rather than IR. According to the review and meta-analysis by Paterson et al, the level of evidence for recommendations regarding optimal duration and position of immobilization to reduce the risk of recurrent dislocation was therapeutic level II. This level of evidence was appropriate because the review included only prospective studies of level I or II and a minimum follow-up of 1 year.

Keywords: glenohumeral joint; immobilization position; recurrence; traumatic injuries.

PubMed Disclaimer

Comment on

Similar articles

Cited by

References

    1. Jakobsen BW, Johannsen HV, Suder P, Søjberg JO. Primary repair versus conservative treatment of first-time traumatic anterior dislocation of the shoulder: a randomized study with 10-year follow-up. Arthroscopy. 2007;23(2):118–123. - PubMed
    1. Larrain MV, Botto GJ, Montenegro HJ, Mauas DM. Arthroscopic repair of acute traumatic anterior shoulder dislocation in young athletes. Arthroscopy. 2001;17(4):373–377. - PubMed
    1. Itoi E, Sashi R, Minagawa H, Shimizu T, Wakabayashi I, Sato K. Position of immobilization after dislocation of the glenohumeral joint: a study with use of magnetic resonance imaging. J Bone Joint Surg Am. 2001;83(5):661–667. - PubMed
    1. Itoi E, Hatakeyama Y, Sato T, et al. Immobilization in external rotation after shoulder dislocation reduces the risk of recurrence: a randomized controlled trial. J Bone Joint Surg Am. 2007;89(10):2124–2131. - PubMed
    1. Scheibel M, Kuke A, Nikulka C, Magosch P, Ziesler O, Schroeder RJ. How long should acute anterior dislocations of the shoulder be immobilized in external rotation? Am J Sports Med. 2009;37(7):1309–1316. - PubMed