Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2015 Feb 24:15:21.
doi: 10.1186/s12871-015-0004-1. eCollection 2015.

Dexmedetomidine versus remifentanil in postoperative pain control after spinal surgery: a randomized controlled study

Affiliations
Randomized Controlled Trial

Dexmedetomidine versus remifentanil in postoperative pain control after spinal surgery: a randomized controlled study

Wonjung Hwang et al. BMC Anesthesiol. .

Abstract

Background: Total intravenous anesthesia (TIVA) is used widely in spinal surgery because inhalational anesthetics are known to decrease the amplitude of motor evoked potentials. Presently, dexmedetomidine is used as an adjuvant for propofol-based TIVA. We compared the effects of remifentanil and dexmedetomidine on pain intensity as well as the analgesic requirements after post-anesthesia care unit (PACU) discharge in patients undergoing spinal surgery.

Methods: Forty patients scheduled for posterior lumbar interbody fusion (PLIF) surgery under general anesthesia were enrolled. Anesthesia was maintained using propofol at 3-12 mg/kg/h and remifentanil at 0.01-0.2 μg/kg/min in Remifentanil group or dexmedetomidine at 0.01-0.02 μg/kg/min in Dexmedetomidine group, keeping the bispectral index between 40 and 60. Patient-controlled analgesia (PCA) made of hydromophone was applied once the patients opened their eyes in the PACU. The visual analog scale (VAS) score, PCA dosage administered, and postoperative nausea and vomiting (PONV) were recorded at the time of discharge from the PACU (T1) and at 2 (T2), 8 (T3), 24 (T4), and 48 hours (T5) after surgery.

Results: The VAS score in Remifentanil group was significantly higher than that in Dexmedetomidine group at immediate and late postoperative period (4.1 ± 2.0 vs. 2.3 ± 2.2 at T1, and 4.0 ± 2.2 vs. 2.6 ± 1.7 at T5; P < 0.05). Dexmedtomidine group had a statistically significantly lower PCA requirement at every time point after surgery except directly before discharge from the PACU (3.0 ± 1.2 ml vs. 2.3 ± 1.4 ml at T1; P > 0.05, but 69.7 ± 21.4 ml vs. 52.8 ± 10.8 ml at T5; P < 0.05). Patients in Remifentanil group displayed more PONV until 24 hours post-surgery.

Conclusions: Dexmedetomidine displayed superior efficacy in alleviating pain and in postoperative pain management for 48 hours after PLIF. Therefore, dexmedetomidine may be used instead of remifentanil as an adjuvant in propofol-based TIVA.

Trial registration: Clinical Research Information Service (CRiS) Identifier: KCT0001041.

Keywords: Dexmedetomidine; Postoperative pain; Remifentanil; Total intravenous anesthesia.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Consort flow diagram.
Figure 2
Figure 2
Comparison of postoperative VAS scores between the groups. VAS = visual analog scale; T1 = before PACU discharge; T2 = 2 hours after surgery; T3 = 8 hours after surgery; T4 = 24 hours after surgery; T5 = 48 hours after surgery. *P < 0.05.
Figure 3
Figure 3
Comparison of postoperative PCA use between the groups. PCA = patient-controlled analgesia; T1 = before PACU discharge; T2 = 2 hours after surgery; T3 = 8 hours after surgery; T4 = 24 hours after surgery; T5 = 48 hours after surgery. *P < 0.05.

References

    1. Sekimoto K, Nishikawa K, Ishizeki J, Kubo K, Saito S, Goto F. The effects of volatile anesthetics on intraoperative monitoring of myogenic motor-evoked potentials to transcranial electrical stimulation and on partial neuromuscular blockade during propofol/fentanyl/nitrous oxide anesthesia in humans. J Neurosurg Anesthesiol. 2006;18(2):106–11. doi: 10.1097/00008506-200604000-00003. - DOI - PubMed
    1. Pechstein U, Nadstawek J, Zentner J, Schramm J. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol. 1998;108(2):175–81. doi: 10.1016/S0168-5597(97)00086-5. - DOI - PubMed
    1. Zheng Y, Cui S, Liu Y, Zhang J, Zhang W, Zhang J, et al. Dexmedetomidine prevents remifentanil-induced postoperative hyperalgesia and decreases spinal tyrosine phosphorylation of N-methyl-d-aspartate receptor 2B subunit. Brain Res Bull. 2012;87(4–5):427–31. doi: 10.1016/j.brainresbull.2012.01.009. - DOI - PubMed
    1. Lee C, Kim YD, Kim JN. Antihyperalgesic effects of dexmedetomidine on high-dose remifentanil-induced hyperalgesia. Kor J Anesthesiol. 2013;64(4):301–7. doi: 10.4097/kjae.2013.64.4.301. - DOI - PMC - PubMed
    1. De Kock M, Wiederkher P, Laghmiche A, Scholtes JL. Epidural clonidine used as the sole analgesic agent during and after abdominal surgery. A dose–response study. Anesthesiology. 1997;86(2):285–92. doi: 10.1097/00000542-199702000-00003. - DOI - PubMed

Publication types

MeSH terms

Associated data