Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Apr;26(3):182-9.
doi: 10.1016/j.ejim.2015.02.010. Epub 2015 Mar 6.

Multimorbidity in risk stratification tools to predict negative outcomes in adult population

Affiliations
Review

Multimorbidity in risk stratification tools to predict negative outcomes in adult population

Edurne Alonso-Morán et al. Eur J Intern Med. 2015 Apr.

Abstract

Introduction: Risk stratification tools were developed to assess risk of negative health outcomes. These tools assess a variety of variables and clinical factors and they can be used to identify targets of potential interventions and to develop care plans. The role of multimorbidity in these tools has never been assessed.

Objectives: To summarize validated risk stratification tools for predicting negative outcomes, with a specific focus on multimorbidity.

Methods: MEDLINE, Cochrane Central Register of Controlled Trials and PubMed database were interrogated for studies concerning risk prediction models in medical populations. Review was conducted to identify prediction models tested with patients in both derivation and validation cohorts. A qualitative synthesis was performed focusing particularly on how multimorbidity is assessed by each algorithm and how much this weighs in the ability of discrimination.

Results: Of 3674 citations reviewed, 36 articles met criteria. Of these, 29 had as outcome hospital admission/readmission. The most common multimorbidity measure employed in the models was the Charlson Comorbidity Index (12 articles). C-statistics ranged between 0.5 and 0.85 in predicting hospital admission/ readmission. The highest c-statistics was 0.83 in models with disability as outcome. For healthcare cost, models which used ACG-PM case mix explained better the variability of total costs.

Conclusions: This review suggests that predictive risk models which employ multimorbidity as predictor variable are more accurate; CHF, cerebro-vascular disease, COPD and diabetes were strong predictors in some of the reviewed models. However, the variability in the risk factors used in these models does not allow making assumptions.

Keywords: Adverse outcomes; Multimorbidity; Predictive models; Stratification tools.

PubMed Disclaimer

Publication types

LinkOut - more resources