Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun:128:332-40.
doi: 10.1016/j.chemosphere.2015.02.008. Epub 2015 Mar 6.

Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil-plant system

Affiliations

Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil-plant system

Sylvain Corbel et al. Chemosphere. 2015 Jun.

Abstract

The impact of a crude extract of Microcystis aeruginosa (PCC7820) containing 14 microcystin variants was investigated on seeds germination and radicles development of four agricultural plants: two tomato varieties Solanum lycopersicum (MicroTom and Saint-Pierre), the wheat Triticum aestivum and the lettuce Lactuca sativa. In addition, the effect of 14 d-exposure to irrigation water containing realistic concentrations of microcystins (0-0.1 mg eq. microcystin-LRL(-1)) on the tomato MicroTom seedling growth was further evaluated on roots and aerial part biomasses. Impacts on soil bacterial parameters, as such extracellular enzymatic activities, nitrification activity and abundances of ammonia-oxidizing microorganisms were also investigated. In germination-test, the cyanobacterial extract inhibited only the germination of the wheat seeds, with an EC50 of 11 mg eq. microcystin-LRL(-1); which is 13 times lower than that of the cadmium chloride (EC50 of 145 mg L(-1)). Moreover, the cyanobacterial extract containing low concentrations of microcystins increased the growth of primary roots; however, high concentrations decreased it for all plants except for the wheat. In the soil-plant approach, only aerial part biomass of the tomato MicroTom was enhanced significantly. In addition, only soil nitrification potential and ammonia-oxidizing bacterial abundances were consistently impacted. A significant positive correlation (r=0.56) was found between the increase of nitrification potential and abundances of ammonia-oxidizing bacteria. This work suggested, that exposure to a cyanobacterial extract containing realistic environmental microcystins concentrations could affect seed germination, depending plant species. It was also highlighted, for the first time, disturbances in soil bacteria functioning, evidences on soil nitrification process.

Keywords: Ammonia-oxidizing bacteria; Microcystins; Nitrification; Plant growth; Seed germination; Soil enzymatic activities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources