Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars
- PMID: 25754513
- DOI: 10.1111/nph.13375
Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars
Abstract
Strigolactones released from plant roots trigger both seed germination of parasitic weeds such as Striga spp. and hyphal branching of the symbionts arbuscular mycorrhizal (AM) fungi. Generally, strigolactone composition in exudates is quantitatively and qualitatively different among plants, which may be involved in susceptibility and host specificity in the parasite-plant interactions. We hypothesized that difference in strigolactone composition would have a significant impact on compatibility and host specificity/preference in AM symbiosis. Strigolactones in root exudates of Striga-susceptible (Pioneer 3253) and -resistant (KST 94) maize (Zea mays) cultivars were characterized by LC-MS/MS combined with germination assay using Striga hermonthica seeds. Levels of colonization and community compositions of AM fungi in the two cultivars were investigated in field and glasshouse experiments. 5-Deoxystrigol was exuded exclusively by the susceptible cultivar, while the resistant cultivar mainly exuded sorgomol. Despite the distinctive difference in strigolactone composition, the levels of AM colonization and the community compositions were not different between the cultivars. The present study demonstrated that the difference in strigolactone composition has no appreciable impact on AM symbiosis, at least in the two maize cultivars, and further suggests that the traits involved in Striga-resistance are not necessarily accompanied by reduction in compatibility to AM fungi.
Keywords: Striga spp.; Zea mays (maize); arbuscular mycorrhizal (AM) fungi; community composition; compatibility; strigolactone; susceptibility.
© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
References
-
- Abu Irmaileh BE. 1994. Nitrogen reduces branched broomrape (Orobanche ramosa) seed germination. Weed Science 42: 57-60.
-
- Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824-827.
-
- Akiyama K, Ogasawara S, Ito S, Hayashi H. 2010. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant and Cell Physiology 51: 1104-1117.
-
- Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K. 2006. Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regulation 48: 221-227.
-
- Cechin I, Press MC. 1993. Nitrogen relations of the sorghum-Striga hermonthica host-parasite association: germination, attachment and early growth. New Phytologist 124: 681-687.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
