Substitution of amino acids in helix F of bacteriorhodopsin: effects on the photochemical cycle
- PMID: 2575916
- DOI: 10.1021/bi00452a022
Substitution of amino acids in helix F of bacteriorhodopsin: effects on the photochemical cycle
Abstract
The effects of amino acid substitutions in helix F of bacteriorhodopsin on the photocycle of this light-driven proton pump were studied. The photocycles of Ser-183----Ala and Glu-194----Gln mutants were qualitatively similar to that of wild-type bacteriorhodopsin produced in Escherichia coli and bacteriorhodopsin from Halobacterium halobium. The substitution of a Phe for either Trp-182 or Trp-189 significantly reduced the fraction of photocycling bacteriorhodopsin. The amino acid substitutions Tyr-185----Phe and Ser-193----Ala substantially increased the lifetime of the photocycle without substantially increasing the lifetime of the M photocycle intermediate. Similar results were also obtained with the Pro-186----Gly substitution. In contrast, replacing Pro-186 with the larger residue Leu inhibited the formation of the M photocycle intermediate. These results are consistent with a structural model of the retinal-binding pocket suggested by low-temperature UV/visible and Fourier transform infrared difference spectroscopies that has Trp-182, Tyr-185, Pro-186, and Trp-189 forming part of the binding pocket.
Similar articles
-
Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy.J Biol Chem. 1988 Sep 25;263(27):13594-601. J Biol Chem. 1988. PMID: 3047127
-
Substitution of membrane-embedded aspartic acids in bacteriorhodopsin causes specific changes in different steps of the photochemical cycle.Biochemistry. 1989 Dec 26;28(26):10035-42. doi: 10.1021/bi00452a023. Biochemistry. 1989. PMID: 2575917
-
Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F.J Biol Chem. 1987 Jul 5;262(19):9277-84. J Biol Chem. 1987. PMID: 3597412
-
Trapping and spectroscopic identification of the photointermediates of bacteriorhodopsin at low temperatures.Photochem Photobiol. 2001 May;73(5):453-62. doi: 10.1562/0031-8655(2001)073<0453:tasiot>2.0.co;2. Photochem Photobiol. 2001. PMID: 11367564 Review.
-
Analogies between halorhodopsin and bacteriorhodopsin.Biochim Biophys Acta. 2000 Aug 30;1460(1):220-9. doi: 10.1016/s0005-2728(00)00141-9. Biochim Biophys Acta. 2000. PMID: 10984602 Review.
Cited by
-
Effects of individual genetic substitutions of arginine residues on the deprotonation and reprotonation kinetics of the Schiff base during the bacteriorhodopsin photocycle.Biophys J. 1991 Jul;60(1):172-8. doi: 10.1016/S0006-3495(91)82040-9. Biophys J. 1991. PMID: 1883936 Free PMC article.
-
Automated method for modeling seven-helix transmembrane receptors from experimental data.Biophys J. 1995 Dec;69(6):2419-42. doi: 10.1016/S0006-3495(95)80112-8. Biophys J. 1995. PMID: 8599649 Free PMC article.
-
Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na+-translocating rhodopsin by a single amino acid substitution.Photosynth Res. 2018 May;136(2):161-169. doi: 10.1007/s11120-017-0453-0. Epub 2017 Oct 5. Photosynth Res. 2018. PMID: 28983723
-
Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations.Biochim Biophys Acta. 2006 Aug;1757(8):942-68. doi: 10.1016/j.bbabio.2006.06.005. Epub 2006 Jun 17. Biochim Biophys Acta. 2006. PMID: 16905113 Free PMC article. Review.
-
The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2583-7. doi: 10.1073/pnas.88.6.2583. Proc Natl Acad Sci U S A. 1991. PMID: 2006195 Free PMC article.