Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 12;15(2):15.
doi: 10.1167/15.2.15.

Letter identification and the neural image classifier

Affiliations
Free article

Letter identification and the neural image classifier

Andrew B Watson et al. J Vis. .
Free article

Abstract

Letter identification is an important visual task for both practical and theoretical reasons. To extend and test existing models, we have reviewed published data for contrast sensitivity for letter identification as a function of size and have also collected new data. Contrast sensitivity increases rapidly from the acuity limit but slows and asymptotes at a symbol size of about 1 degree. We recast these data in terms of contrast difference energy: the average of the squared distances between the letter images and the average letter image. In terms of sensitivity to contrast difference energy, and thus visual efficiency, there is a peak around ¼ degree, followed by a marked decline at larger sizes. These results are explained by a Neural Image Classifier model that includes optical filtering and retinal neural filtering, sampling, and noise, followed by an optimal classifier. As letters are enlarged, sensitivity declines because of the increasing size and spacing of the midget retinal ganglion cell receptive fields in the periphery.

Keywords: classification; contrast; contrast difference energy; detection; efficiency; identification; letter identification; noise; optics; peripheral vision.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources