Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 1:128:331-338.
doi: 10.1016/j.colsurfb.2015.02.019. Epub 2015 Feb 17.

Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system

Affiliations

Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system

Zeynep Aytac et al. Colloids Surf B Biointerfaces. .

Abstract

Herein, hydroxypropyl-beta-cyclodextrin (HPβCD) inclusion complex (IC) of a hydrophobic drug, sulfisoxazole (SFS) was incorporated in hydroxypropyl cellulose (HPC) nanofibers (HPC/SFS/HPβCD-IC-NF) via electrospinning. SFS/HPβCD-IC was characterized by DSC to investigate the formation of inclusion complex and the stoichiometry of the complex was determined by Job's plot. Modeling studies were also performed on SFS/HPβCD-IC using ab initio technique. SEM images depicted the defect free uniform fibers and confirmed the incorporation of SFS/HPβCD-IC in nanofibers did not alter the fiber morphology. XRD analyses showed amorphous distribution of SFS/HPβCD-IC in the fiber mat. Release studies were performed in phosphate buffered saline (PBS). The results suggest higher amount of SFS released from HPC/SFS/HPβCD-IC-NF when compared to free SFS containing HPC nanofibers (HPC/SFS-NF). This was attributed to the increased solubility of SFS by inclusion complexation. Sandwich configurations were prepared by placing HPC/SFS/HPβCD-IC-NF between electrospun PCL nanofibrous mat (PCL-HPC/SFS/HPβCD-IC-NF). Consequently, PCL-HPC/SFS/HPβCD-IC-NF exhibited slower release of SFS as compared with HPC/SFS/HPβCD-IC-NF. This study may provide more efficient future strategies for developing delivery systems of hydrophobic drugs.

Keywords: Cyclodextrin; Electrospinning; Hydroxypropyl cellulose; Molecular modeling; Nanofibers; Sulfisoxazole.

PubMed Disclaimer

Publication types

LinkOut - more resources