Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Mar;93(3):271-6.
doi: 10.1038/icb.2015.18.

Epigenomics of autoimmune diseases

Affiliations
Review

Epigenomics of autoimmune diseases

Bhawna Gupta et al. Immunol Cell Biol. 2015 Mar.

Abstract

Autoimmune diseases are complex disorders of largely unknown etiology. Genetic studies have identified a limited number of causal genes from a marginal number of individuals, and demonstrated a high degree of discordance in monozygotic twins. Studies have begun to reveal epigenetic contributions to these diseases, primarily through the study of DNA methylation, but chromatin and non-coding RNA changes are also emerging. Moving forward an integrative analysis of genomic, transcriptomic and epigenomic data, with the latter two coming from specific cell types, will provide an understanding that has been missed from genetics alone. We provide an overview of the current state of the field and vision for deriving the epigenomics of autoimmunity.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 1993; 8: 1063–1067. - PubMed
    1. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009; 459: 108–112. - PMC - PubMed
    1. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 2009; 4: 80–93. - PMC - PubMed
    1. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010; 6: 479–491. - PMC - PubMed
    1. Hawkins RD, Hon GC, Yang C, Antosiewicz-Bourget JE, Lee LK, Ngo QM et al. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency. Cell Res 2011; 21: 1393–1409. - PMC - PubMed

Substances