Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Feb;44(2):473-9.
doi: 10.1111/j.1471-4159.1985.tb05438.x.

Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump

Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump

N Brookes et al. J Neurochem. 1985 Feb.

Abstract

Glucose utilization in primary cell cultures of mouse cerebral astrocytes was studied by measuring uptake of tracer concentrations of [3H]2-deoxyglucose ([3H]2-DG). The resting rate of glucose utilization, estimated at an extracellular K+ concentration ([K+]o) of 5.4 mM, was high (7.5 nmol glucose/mg protein/min) and was similar in morphologically undifferentiated and "differentiated" (dibutyryl cyclic AMP-pretreated) cultures. Resting uptake of [3H]2-DG was depressed by ouabain, by reducing [K+]o, and by cooling. These observations suggest that resting glucose utilization in astrocytes was dependent on sodium pump activity. Sodium pump-dependent uptake in 2-3-week-old cultures was about 50% of total [3H]2-DG uptake but this fraction declined with culture age from 1 to 5 weeks. Uptake was not affected by changes in extracellular bicarbonate concentration ([HCO3-]o) in the range of 5-50 mM but was significantly reduced in bicarbonate-free solution. At high [HCO3-]o (50 mM) uptake was insensitive to pH (pH 6-8), whereas at low [HCO3-]o (less than 5 mM) uptake was markedly pH-dependent. Elevation of [K+]o from 2.3 mM to 14.2-20 mM (corresponding to extremes of the physiological range of [K+]o) resulted in a 35-43% increase in [3H]2-DG uptake that was not affected by culture age or by morphological differentiation. Our results indicate a high apparent rate of glucose utilization in astrocytes. This rate is dynamically responsive to changes in extracellular K+ concentration in the physiological range and is partially dependent on sodium pump activity.

PubMed Disclaimer

Publication types

LinkOut - more resources