Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 3:9:54.
doi: 10.3389/fnbeh.2015.00054. eCollection 2015.

The attribution of incentive salience to Pavlovian alcohol cues: a shift from goal-tracking to sign-tracking

Affiliations

The attribution of incentive salience to Pavlovian alcohol cues: a shift from goal-tracking to sign-tracking

Chandra S Srey et al. Front Behav Neurosci. .

Abstract

Environmental stimuli that are reliably paired with alcohol may acquire incentive salience, a property that can operate in the use and abuse of alcohol. Here we investigated the incentive salience of Pavlovian alcohol cues using a preclinical animal model. Male, Long-Evans rats (Harlan) with unrestricted access to food and water were acclimated to drinking 15% ethanol (v/v) in their home-cages. Rats then received Pavlovian autoshaping training in which the 10 s presentation of a retractable lever served as the conditioned stimulus (CS) and 15% ethanol served as the unconditioned stimulus (US) (0.2 ml/CS; 12 CS presentations/session; 27 sessions). Next, in an operant test of conditioned reinforcement, nose pokes into an active aperture delivered presentations of the lever-CS, whereas nose pokes into an inactive aperture had no consequences. Across initial autoshaping sessions, goal-tracking behavior, as measured by entries into the fluid port where ethanol was delivered, developed rapidly. However, with extended training goal-tracking diminished, and sign-tracking responses, as measured by lever-CS activations, emerged. Control rats that received explicitly unpaired CS and US presentations did not show goal-tracking or sign-tracking responses. In the test for conditioned reinforcement, rats with CS-US pairings during autoshaping training made more active relative to inactive nose pokes, whereas rats in the unpaired control group did not. Moreover, active nose pokes were positively correlated with sign-tracking behavior during autoshaping. Extended training may produce a shift in the learned properties of Pavlovian alcohol cues, such that after initially predicting alcohol availability they acquire robust incentive salience.

Keywords: autoshaping; conditioned reinforcement; conditioned stimulus; ethanol; motivation; rat.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The timing of experimental events during Pavlovian autoshaping sessions for paired and unpaired groups. The conditioned stimulus (CS) occurred synchronously for both groups and consisted of the insertion of a lever into the conditioning chamber for 10 s. For the paired group, retraction of the lever-CS was immediately followed by the delivery of 0.2 ml of 15% ethanol unconditioned stimulus (US) across 6 s into a fluid port for oral consumption. For the unpaired group, US delivery occurred halfway between two lever-CS presentations. For both groups, the variable interval between offset of one lever-CS and onset of the next lever-CS was 260 s on average, excluding the 6 s over which ethanol was delivered.
Figure 2
Figure 2
Alcohol intake and preference increased across 12 sessions in which access to 15% ethanol was provided in the home-cage for 24 h. In this and subsequent graphs, black symbols represent the paired group (n = 11) and white symbols represent the unpaired group (n = 12). Data are expressed as mean ± SEM for each session. (A) Alcohol intake in grams of ethanol consumed as a function of rat weight (g/kg/24 h). (B) Alcohol preference calculated as grams of ethanol solution consumed divided by grams of total fluid consumed in the same session and expressed as a percentage (%).
Figure 3
Figure 3
Conditioned responding elicited by the lever-CS shifted from initial goal-tracking responses to robust sign-tracking behavior with extended Pavlovian autoshaping training. Data are expressed as mean ± SEM for each training session. (A) Photograph depicting goal-tracking behavior, defined as entries into the fluid port during the lever-CS. (B) Normalized port entries during the lever-CS across session. To calculate a normalized measure that accounted for differences in baseline levels of behavior, port entries during a 10 s pre-CS interval were subtracted from port entries during the corresponding lever-CS. (C) Latency to enter the fluid port after presentation of the lever-CS. (D) Photograph depicting sign-tracking behavior, defined as activation of the lever-CS. (E) Number of lever-CS activations across session. (F) Latency to activate the lever-CS.
Figure 4
Figure 4
Response bias shifted from primarily goal-tracking to predominantly sign-tracking with extended Pavlovian autoshaping training. Response bias was calculated for each subject in the paired group using the formula: (number of lever-CS activations minus number of port entries)/(sum of lever-CS activations and port entries). The x-axis represents the identification number of individual rats represented in (A) session 8 and (B) session 27. A response bias score between −1 and 0 indicates a preference toward goal-tracking and a response bias score between 0 and 1 indicates a preference toward sign-tracking. Individual rats that demonstrated a shift in preference from goal-tracking in session 8 to sign-tracking in session 27 are depicted with black bars.
Figure 5
Figure 5
Higher levels of sign-tracking behavior were associated with lower levels of goal-tracking responses at the end of Pavlovian autoshaping training. Data represent mean ± SEM normalized port entries and lever-CS activations averaged across sessions 19–27. Each symbol represents data from an individual rat in (A) the paired group or (B) the unpaired group. Pearson's r-values are indicated in each graph. *p < 0.05.
Figure 6
Figure 6
Both paired and unpaired groups learned to approach the fluid port when alcohol was delivered during Pavlovian autoshaping training. Data represent mean ± SEM number of port entries made during the 6 s when alcohol was delivered in to the fluid port.
Figure 7
Figure 7
A lever-CS that was previously paired with alcohol functioned as a conditioned reinforcer. Black bars represent the paired group and white bars represent the unpaired group. Data are expressed as mean ± SEM for tests 1–4. (A–D) Number of nose pokes into the active and inactive apertures. (E–H) Number of lever-CS presentations earned. (I–L) Number of times the lever-CS was activated when it was presented as the result of active nose pokes. p < 0.01, paired active vs. inactive. *p < 0.05 and **p < 0.01, paired vs. unpaired.
Figure 8
Figure 8
Correlations between sign-tracking behavior at the end of Pavlovian autoshaping training and response measures obtained in each of the 4 tests for conditioned reinforcement in all rats. In each graph, lever-CS activations averaged across sessions 26 and 27 of Pavlovian autoshaping training are plotted on the x-axis for each rat in the paired (black circles) and unpaired (white circles) groups. (A–D) Correlation between active nose poke responses and sign-tracking behavior. (E–H) Correlation between inactive nose poke responses and sign-tracking behavior. (I–L) Correlation between lever-CS presentations earned and sign-tracking behavior. (M–P) Correlation between lever-CS activations and sign-tracking behavior. *p < 0.05 and **p < 0.01.

References

    1. Anselme P., Robinson M. J., Berridge K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behav. Brain Res. 238, 53–61. 10.1016/j.bbr.2012.10.006 - DOI - PMC - PubMed
    1. Atnip G. W. (1977). Stimulus- and response-reinforcer contingencies in autoshaping, operant, classical, and omission training procedures in rats. J. Exp. Anal. Behav. 28, 59–69. 10.1901/jeab.1977.28-59 - DOI - PMC - PubMed
    1. Attwood A. S., Scott-Samuel N. E., Stothart G., Munafo M. R. (2012). Glass shape influences consumption rate for alcoholic beverages. PLoS ONE 7:e43007. 10.1371/journal.pone.0043007 - DOI - PMC - PubMed
    1. Back S. E., Gros D. F., Mccauley J. L., Flanagan J. C., Cox E., Barth K. S., et al. . (2014). Laboratory-induced cue reactivity among individuals with prescription opioid dependence. Addict. Behav. 39, 1217–1223. 10.1016/j.addbeh.2014.04.007 - DOI - PMC - PubMed
    1. Berridge K. C., Robinson T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain research. Brain Res. Rev. 28, 309–369. 10.1016/S0165-0173(98)00019-8 - DOI - PubMed

LinkOut - more resources