Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 21;13(15):4367-73.
doi: 10.1039/c5ob00055f.

Palladium-catalyzed α-arylation of carbonyls in the de novo synthesis of aromatic heterocycles

Affiliations

Palladium-catalyzed α-arylation of carbonyls in the de novo synthesis of aromatic heterocycles

Harish K Potukuchi et al. Org Biomol Chem. .

Abstract

Aromatic heterocycles are a very well represented motif in natural products and have found various applications in chemistry and material science, as well as being commonly found in pharmaceutical agents. Thus, new and efficient routes towards this class of compound are always desirable, particularly if they expand the scope of chemical methodology or facilitate more effective pathways to complex substitution patterns. This perspective covers recent developments in the de novo synthesis of aromatic heterocycles via palladium-catalysed α-arylation reactions of carbonyls, which is itself a powerful transformation that has undergone significant development in recent years.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. A selection of phosphine ligands and palladium-precatalysts used in the α-arylation reaction.
Scheme 1
Scheme 1. Synthesis of 2-substituted indoles.
Scheme 2
Scheme 2. Indole synthesis using imine α-arylation.
Scheme 3
Scheme 3. Synthesis of indoles, isoindoles and pyrrolo[3,4-b]indoles.
Scheme 4
Scheme 4. Synthesis of benzofurans from benzyl ketones.
Scheme 5
Scheme 5. Synthesis of benzofurans and benzothiophenes.
Scheme 6
Scheme 6. One-pot synthesis of benzofurans.
Scheme 7
Scheme 7. Synthesis of isoquinolines via α-arylation.
Scheme 8
Scheme 8. Modular synthesis via in situ functionalization; yields reported for both steps. aElectrophile E+.
Scheme 9
Scheme 9. C-4 Aryl isoquinolines via a one-pot process.
Scheme 10
Scheme 10. Synthesis of berberine.
Scheme 11
Scheme 11. Synthesis of palmatine and dehydrocorydaline.
None
Harish K. Potukuchi
None
Anatol P. Spork
None
Timothy J. Donohoe

References

    1. . For selected reviews, see:

    2. Palucki M., Buchwald S. L. J. Am. Chem. Soc. 1997;119:11108–11109.
    3. Hamann B. C., Hartwig J. F. J. Am. Chem. Soc. 1997;119:12382–12383.
    4. Satoh T., Kawamura Y., Miura M., Nomura M. Angew. Chem., Int. Ed. 1997;36:1740–1742.
    5. Åhman J., Wolfe J. P., Troutman M. V., Palucki M., Buchwald S. L. J. Am. Chem. Soc. 1998;120:1918–1919.
    6. Shaughnessy K. H., Hamann B. C., Hartwig J. F. J. Org. Chem. 1998;63:6546–6553.
    7. Kawatsura M., Hartwig J. F. J. Am. Chem. Soc. 1999;121:1473–1478.
    8. Fox J. M., Huang X., Chieffi A., Buchwald S. L. J. Am. Chem. Soc. 2000;122:1360–1370.
    9. Stauffer S. R., Beare N. A., Stambuli J. P., Hartwig J. F. J. Am. Chem. Soc. 2001;123:4641–4642. - PubMed
    10. Moradi W. A., Buchwald S. L. J. Am. Chem. Soc. 2001;123:7996–8002. - PubMed
    11. Lee S., Beare N. A., Hartwig J. F. J. Am. Chem. Soc. 2001;123:8410–8411. - PubMed
    12. Wolkowski J. P., Hartwig J. F. Angew. Chem., Int. Ed. 2002;41:4289–4291. - PubMed
    13. Beare N. A., Hartwig J. F. J. Org. Chem. 2002;67:541–555. - PubMed
    14. Bellina F., Rossi R. Chem. Rev. 2010;110:1082–1146. - PubMed
    15. Johansson C. C. C., Colacot T. J. Angew. Chem., Int. Ed. 2010;49:676–707. - PubMed
    16. Sivanandan S. T., Shaji A., Ibnusaud I., Seechurn C. C. C. J., Colacot T. J. Eur. J. Org. Chem. 2015;2015:38–49.
    1. Rutherford J. L., Rainka M. P., Buchwald S. L. J. Am. Chem. Soc. 2002;124:15168–15169. - PubMed
    1. Barluenga J., Agustin J.-A., Valdés C., Aznar F. Angew. Chem., Int. Ed. 2007;46:1529–1532. - PubMed
    2. Barluenga J., Agustin J.-A., Aznar F., Valdés C. J. Am. Chem. Soc. 2009;131:4031–4041. - PubMed
    1. Solé D., Vallverdú L., Peidró E., Bonjoch J. Chem. Commun. 2001:1888–1889. - PubMed
    2. Solé D., Vallverdú L., Solans X., Bardía M. F., Bonjoch J. J. Am. Chem. Soc. 2003;125:1587–1594. - PubMed
    3. Solé D., Serrano O. J. Org. Chem. 2008;73:2476–2479. - PubMed
    4. Solé D., Serrano O. J. Org. Chem. 2008;73:9372–9378. - PubMed
    5. Solé D., Serrano O. Org. Biomol. Chem. 2009;7:3382–3384. - PubMed
    6. Solé D., Fernández I., Sierra M. A. Chem. – Eur. J. 2012;18:6950–6958. - PubMed
    7. Solé D., Serrano O. J. Org. Chem. 2010;75:6267–6270. - PubMed
    8. Solé D., Bennasar M.-L., Jiménez I. Org. Biomol. Chem. 2011;9:4535–4544. - PubMed
    9. Fernández I., Solé D., Sierra M. A. J. Org. Chem. 2011;76:1592–1598. - PubMed
    10. Solé D., Fernández I. Acc. Chem. Res. 2014;47:168–179. - PubMed
    1. Terao Y., Satoh T., Miura M., Nomura M. Bull. Chem. Soc. Jpn. 1999;72:2345–2350.

LinkOut - more resources