Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug:132:63-9.
doi: 10.1016/j.chemosphere.2015.02.061. Epub 2015 Mar 22.

Assessing the toxicity and biodegradability of deep eutectic solvents

Affiliations

Assessing the toxicity and biodegradability of deep eutectic solvents

Qing Wen et al. Chemosphere. 2015 Aug.

Abstract

Deep eutectic solvents (DESs) have emerged as a new type of promising ionic solvents with a broad range of potential applications. Although their ecotoxicological profile is still poorly known, DESs are generally regarded as "green" because they are composed of ammonium salts and H-bond donors (HBDs) which are considered to be eco-friendly. In this work, cholinium-based DESs comprised of choline chloride (ChCl) and choline acetate (ChAc) as the salt and urea (U), acetamide (A), glycerol (G) and ethylene glycol (EG) as the HBD were evaluated for their toxic effects on different living organisms such as Escherichia coli (a bacterium), Allium sativum (garlic, a plant) and hydra (an invertebrate), and their biodegradabilities were assessed by means of closed bottle tests. These DESs possessed an anti-bacterial property and exhibited inhibitory effects on the test organisms adopted, depending on the composition and concentration of the DES. The mechanism for the impact of DESs and their components on different living organisms can be associated to their interactions with the cellular membranes. Not all DESs can be considered readily biodegradable. By extending the limited knowledge about the toxicity and biodegradation of this particular solvent family, this investigation on DESs provides insight into our structure-based understanding of their ecotoxicological behavior.

Keywords: Anti-bacterial activity; Biodegradability; Deep eutectic solvents (DESs); Ionic liquids (ILs); Toxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources