Two components of muscarine-sensitive membrane current in rat sympathetic neurones
- PMID: 2580084
- PMCID: PMC1193345
- DOI: 10.1113/jphysiol.1985.sp015554
Two components of muscarine-sensitive membrane current in rat sympathetic neurones
Abstract
Membrane currents induced by muscarine (Imus) were recorded in voltage-clamped neurones in isolated rat superior cervical ganglia. Two components of Imus were regularly recorded: an inward current resulting from inhibition of the outward K+ current, IM; and an outward current attributable to the reduction of a steady inward current. The presence of these two components caused a 'cross-over' in the current-voltage curves at -50 +/- 3 mV in neurones impaled with KCl-filled micro-electrodes or at -63 +/- 4 mV in neurones impaled with K-acetate-filled electrodes. Both components of Imus were prevented by atropine. Both persisted in Krebs solution containing tetrodotoxin (1 microM), Cd2+ (200 microM) or 0 Ca2+. When IM was inhibited by external Ba2+ or internal Cs+ only the outward component of Imus could be detected. This component reversed at +3 +/- 2 mV in cells impaled with CsCl-filled electrodes or at -20 +/- 3 mV in cells impaled with Cs-acetate-filled electrodes. The reversal potentials agreed with those for the currents induced by gamma-aminobutyric acid (+4 +/- 2 mV and -16 +/- 3 mV with CsCl and Cs acetate electrodes respectively). Replacement of external NaCl with Na acetate (so reducing external Cl- concentration ( [Cl-]o) from 155 to 22 mM) shifted the reversal potential for Imus by +25 and +14.5 mV in two cells impaled with CsCl-filled electrodes. A tenfold reduction of external [Na+] (by glucosamine replacement) did not significantly alter the reversal potential for Imus in KCl or CsCl-impaled cells. Under conditions where IM is already inhibited, the residual outward component of Imus can lead to hyperpolarization and inhibition of neuronal activity in unclamped cells. We conclude that both inward and outward components of Imus result from direct activation of muscarinic receptors on the ganglion cells. The inward component results from IM inhibition. We suggest that the outward component results from inhibition of another, voltage-independent current IX which largely comprises a Cl- current. The inward component induces membrane depolarization and an increased excitability; the outward component can lead to hyperpolarization and reduced excitability.
Similar articles
-
Membrane currents underlying the cholinergic slow excitatory post-synaptic potential in the rat sympathetic ganglion.J Physiol. 1985 Aug;365:365-87. doi: 10.1113/jphysiol.1985.sp015777. J Physiol. 1985. PMID: 2411921 Free PMC article.
-
Identification of delayed potassium and calcium currents in the rat sympathetic neurone under voltage clamp.J Physiol. 1985 Jan;358:109-29. doi: 10.1113/jphysiol.1985.sp015543. J Physiol. 1985. PMID: 2580077 Free PMC article.
-
A fast transient outward current in the rat sympathetic neurone studied under voltage-clamp conditions.J Physiol. 1985 Jan;358:91-108. doi: 10.1113/jphysiol.1985.sp015542. J Physiol. 1985. PMID: 2580089 Free PMC article.
-
gamma-Aminobutyric acid responses in rat locus coeruleus neurones in vitro: a current-clamp and voltage-clamp study.J Physiol. 1990 Feb;421:151-70. doi: 10.1113/jphysiol.1990.sp017938. J Physiol. 1990. PMID: 2348390 Free PMC article.
-
Potassium currents in adult rat intracardiac neurones.J Physiol. 1995 Jul 1;486 ( Pt 1)(Pt 1):15-31. doi: 10.1113/jphysiol.1995.sp020787. J Physiol. 1995. PMID: 7562632 Free PMC article.
Cited by
-
Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells.J Physiol. 1988 Mar;397:185-207. doi: 10.1113/jphysiol.1988.sp016995. J Physiol. 1988. PMID: 3261793 Free PMC article.
-
Voltage- and calcium-activated potassium currents in mouse neuroblastoma x rat glioma hybrid cells.J Physiol. 1988 Mar;397:149-65. doi: 10.1113/jphysiol.1988.sp016993. J Physiol. 1988. PMID: 2457695 Free PMC article.
-
Pharmacological differences between two muscarinic responses of the rat superior cervical ganglion in vitro.Br J Pharmacol. 1987 Dec;92(4):817-26. doi: 10.1111/j.1476-5381.1987.tb11386.x. Br J Pharmacol. 1987. PMID: 3427281 Free PMC article.
-
Muscarinic suppression of the M-current in the rat sympathetic ganglion is mediated by receptors of the M1-subtype.Br J Pharmacol. 1989 Oct;98(2):557-73. doi: 10.1111/j.1476-5381.1989.tb12630.x. Br J Pharmacol. 1989. PMID: 2819334 Free PMC article.
-
Membrane currents underlying the cholinergic slow excitatory post-synaptic potential in the rat sympathetic ganglion.J Physiol. 1985 Aug;365:365-87. doi: 10.1113/jphysiol.1985.sp015777. J Physiol. 1985. PMID: 2411921 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous