Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 22;63(15):3830-7.
doi: 10.1021/acs.jafc.5b00846. Epub 2015 Apr 13.

Acceleration of Biochar Surface Oxidation during Composting?

Affiliations

Acceleration of Biochar Surface Oxidation during Composting?

Katja Wiedner et al. J Agric Food Chem. .

Abstract

Biochar composting experiments were performed to determine whether composting is a suitable method to accelerate biochar surface oxidation for increasing its reactivity. To assess the results, surface properties of Terra Preta (Brazil) and ancient charcoal pit (Northern Italy) biochars were additionally investigated. Calculation of O/C ratios by energy-dispersive X-ray spectroscopy demonstrated the anticipated increasing values from fresh biochars (0.13) to composted biochars (0.40), and finally charcoal pit biochars (0.54) and ancient Terra Preta biochars (0.64). By means of Fourier transformation infrared microscopy, formation of carboxylic and phenolic groups on biochars surface could be detected. Carboxylic acids of three composted biochars increased up to 14%, whereas one composted biochar showed a 21% lower proportion of carboxylic acids compared to the corresponding fresh biochar. Phenolic groups increased by 23% for the last mentioned biochar, and on all other biochars phenolic groups decreased up to 22%. Results showed that biochar surface oxidation can be accelerated through composting but still far away from ancient biochars.

Keywords: Terra Preta; biochar; composting; fourier transformation infrared microscopy; scanning electron microscopy; surface functional groups; surface oxidation.

PubMed Disclaimer

Publication types

LinkOut - more resources