Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
- PMID: 25803306
- DOI: 10.1038/nbt.3198
Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
Erratum in
-
Erratum: Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells.Nat Biotechnol. 2018 Feb 6;36(2):196. doi: 10.1038/nbt0218-196d. Nat Biotechnol. 2018. PMID: 29406513 No abstract available.
Abstract
The insertion of precise genetic modifications by genome editing tools such as CRISPR-Cas9 is limited by the relatively low efficiency of homology-directed repair (HDR) compared with the higher efficiency of the nonhomologous end-joining (NHEJ) pathway. To enhance HDR, enabling the insertion of precise genetic modifications, we suppressed the NHEJ key molecules KU70, KU80 or DNA ligase IV by gene silencing, the ligase IV inhibitor SCR7 or the coexpression of adenovirus 4 E1B55K and E4orf6 proteins in a 'traffic light' and other reporter systems. Suppression of KU70 and DNA ligase IV promotes the efficiency of HDR 4-5-fold. When co-expressed with the Cas9 system, E1B55K and E4orf6 improved the efficiency of HDR up to eightfold and essentially abolished NHEJ activity in both human and mouse cell lines. Our findings provide useful tools to improve the frequency of precise gene modifications in mammalian cells.
Similar articles
-
Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.Nat Biotechnol. 2015 May;33(5):538-42. doi: 10.1038/nbt.3190. Epub 2015 Mar 23. Nat Biotechnol. 2015. PMID: 25798939 Free PMC article.
-
Homology-directed repair in mouse cells increased by CasRx-mediated knockdown or co-expressing Kaposi's sarcoma-associated herpesvirus ORF52.Biosci Rep. 2019 Oct 30;39(10):BSR20191914. doi: 10.1042/BSR20191914. Biosci Rep. 2019. PMID: 31519773 Free PMC article.
-
Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA.Nat Biotechnol. 2016 Mar;34(3):339-44. doi: 10.1038/nbt.3481. Epub 2016 Jan 20. Nat Biotechnol. 2016. PMID: 26789497
-
Modulating DNA Repair Pathways to Improve Precision Genome Engineering.ACS Chem Biol. 2018 Feb 16;13(2):389-396. doi: 10.1021/acschembio.7b00777. Epub 2017 Dec 20. ACS Chem Biol. 2018. PMID: 29210569 Review.
-
Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing.FEBS J. 2015 Nov;282(22):4289-94. doi: 10.1111/febs.13416. Epub 2015 Sep 9. FEBS J. 2015. PMID: 26290158 Review.
Cited by
-
Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.Sci Transl Med. 2016 Oct 12;8(360):360ra134. doi: 10.1126/scitranslmed.aaf9336. Sci Transl Med. 2016. PMID: 27733558 Free PMC article.
-
Customizing the genome as therapy for the β-hemoglobinopathies.Blood. 2016 May 26;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub 2016 Apr 6. Blood. 2016. PMID: 27053533 Free PMC article. Review.
-
CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research.Front Med (Lausanne). 2021 Mar 3;8:649896. doi: 10.3389/fmed.2021.649896. eCollection 2021. Front Med (Lausanne). 2021. PMID: 33748164 Free PMC article. Review.
-
Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders.Gene Ther. 2022 May;29(5):207-216. doi: 10.1038/s41434-021-00247-9. Epub 2021 Mar 9. Gene Ther. 2022. PMID: 33750926 Review.
-
CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases.Mol Neurodegener. 2015 Aug 4;10:35. doi: 10.1186/s13024-015-0031-x. Mol Neurodegener. 2015. PMID: 26238861 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials