Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Apr 15;148(2):207-12.
doi: 10.1111/j.1432-1033.1985.tb08826.x.

Characterization of transcriptionally active DNA-protein complexes from chloroplasts and etioplasts of mustard (Sinapis alba L.)

Free article
Comparative Study

Characterization of transcriptionally active DNA-protein complexes from chloroplasts and etioplasts of mustard (Sinapis alba L.)

T Reiss et al. Eur J Biochem. .
Free article

Abstract

DNA-protein complexes that are capable of RNA synthesis in vitro (transcriptionally active chromosomes) were isolated from both chloroplasts and etioplasts of mustard (Sinapis alba L.) seedlings. Analyses of the polypeptide pattern of these complexes indicate that they comprise a specific subset of plastid proteins, distinct from the overall pattern of either the soluble or membrane-bound plastic proteins. DNA-protein complexes from the two plastid types have polypeptides in common. However, at least several polypeptides are highly enriched in either the chloroplast or the etioplast DNA-protein complex. The EcoRI restriction endonuclease fragments of the DNA associated with the complexes from either plastid type are the same. They are identical with the fragments obtained from highly purified chloroplast DNA. The transcriptional activity of the chloroplast complex is more than ten times higher than the activity of the etioplast complex. However, the complexes from either plastid type are capable of transcribing DNA regions containing genes for both the plastid rRNAs and for plastid proteins. In vitro transcripts were found to hybridize not only to DNA regions for mature in vivo RNA but also to adjacent regions, indicating synthesis of precursor RNA sequences by the transcriptionally active chromosomes.

PubMed Disclaimer

Publication types

LinkOut - more resources