Two fundamental mechanisms govern the stiffening of cross-linked networks
- PMID: 25809259
- PMCID: PMC4375685
- DOI: 10.1016/j.bpj.2015.02.015
Two fundamental mechanisms govern the stiffening of cross-linked networks
Abstract
Biopolymer networks, such as those constituting the cytoskeleton of a cell or biological tissue, exhibit a nonlinear strain-stiffening behavior when subjected to large deformations. Interestingly, rheological experiments on various in vitro biopolymer networks have shown similar strain-stiffening trends regardless of the differences in their microstructure or constituents, suggesting a universal stiffening mechanism. In this article, we use computer simulations of a random network comprised of cross-linked biopolymer-like fibers to substantiate the notion that this universality lies in the existence of two fundamental stiffening mechanisms. After showing that the large strain response is accompanied by the development of a stress path, i.e., a percolating path of axially stressed fibers and cross-links, we demonstrate that the strain stiffening can be caused by two distinctly different mechanisms: 1) the pulling out of stress-path undulations; and 2) reorientation of the stress path. The former mechanism is bending-dominated and can be recognized by a power-law dependence with exponent 3/2 of the shear modulus on stress, whereas the latter mechanism is stretching-dominated and characterized by a power-law exponent 1/2. We demonstrate how material properties of the constituents, as well as the network microstructure, can affect the transition between the two stiffening mechanisms and, as such, control the dominant power-law scaling behavior.
Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures








Similar articles
-
Nonlinear Mechanics of Athermal Branched Biopolymer Networks.J Phys Chem B. 2016 Jul 7;120(26):5831-41. doi: 10.1021/acs.jpcb.6b00259. Epub 2016 Mar 4. J Phys Chem B. 2016. PMID: 26901575
-
Alternative explanation of stiffening in cross-linked semiflexible networks.Phys Rev Lett. 2005 Oct 21;95(17):178102. doi: 10.1103/PhysRevLett.95.178102. Epub 2005 Oct 18. Phys Rev Lett. 2005. PMID: 16383874
-
Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.Biomacromolecules. 2012 Mar 12;13(3):691-8. doi: 10.1021/bm2015812. Epub 2012 Feb 15. Biomacromolecules. 2012. PMID: 22293015
-
Continuum elastic models for force transmission in biopolymer gels.Soft Matter. 2020 Dec 28;16(48):10781-10808. doi: 10.1039/d0sm01451f. Epub 2020 Dec 8. Soft Matter. 2020. PMID: 33289764 Review.
-
Effects of non-linearity on cell-ECM interactions.Exp Cell Res. 2013 Oct 1;319(16):2481-9. doi: 10.1016/j.yexcr.2013.05.017. Epub 2013 Jun 5. Exp Cell Res. 2013. PMID: 23748051 Free PMC article. Review.
Cited by
-
Mechanics and dynamics of reconstituted cytoskeletal systems.Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3038-42. doi: 10.1016/j.bbamcr.2015.06.013. Epub 2015 Jun 27. Biochim Biophys Acta. 2015. PMID: 26130089 Free PMC article. Review.
-
3D reactive inkjet printing of aliphatic polyureas using in-air coalescence technique.RSC Adv. 2022 Jan 25;12(6):3406-3415. doi: 10.1039/d1ra07883f. eCollection 2022 Jan 24. RSC Adv. 2022. PMID: 35425380 Free PMC article.
-
Network dynamics of the nonlinear power-law relaxation of cell cortex.Biophys J. 2022 Nov 1;121(21):4091-4098. doi: 10.1016/j.bpj.2022.09.035. Epub 2022 Sep 28. Biophys J. 2022. PMID: 36171727 Free PMC article.
-
A discrete fiber network finite element model of arterial elastin network considering inter-fiber crosslinking property and density.J Mech Behav Biomed Mater. 2022 Oct;134:105396. doi: 10.1016/j.jmbbm.2022.105396. Epub 2022 Jul 31. J Mech Behav Biomed Mater. 2022. PMID: 35963022 Free PMC article.
-
Strong triaxial coupling and anomalous Poisson effect in collagen networks.Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6790-6799. doi: 10.1073/pnas.1815659116. Epub 2019 Mar 20. Proc Natl Acad Sci U S A. 2019. PMID: 30894480 Free PMC article.
References
-
- Gibson L.J., Ashby M.F. 2nd ed. Cambridge University Press; Cambridge, United Kingdom: 1997. Cellular Solids.
-
- Picu R.C. Mechanics of random fiber networks—a review. Soft Matter. 2011;7:6768–6785.
-
- Bausch A.R., Kroy K. A bottom-up approach to cell mechanics. Nat. Phys. 2006;2:231–238.
-
- Kasza K.E., Rowat A.C., Weitz D.A. The cell as a material. Curr. Opin. Cell Biol. 2007;19:101–107. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources