Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May;24(5):980-7.
doi: 10.1016/j.jstrokecerebrovasdis.2014.12.022. Epub 2015 Mar 23.

Poor outcome of experimental ischemic stroke in type 2 diabetic rats: impaired circulating endothelial progenitor cells mobilization

Affiliations

Poor outcome of experimental ischemic stroke in type 2 diabetic rats: impaired circulating endothelial progenitor cells mobilization

HongNa Yang et al. J Stroke Cerebrovasc Dis. 2015 May.

Abstract

Background: It is well accepted that type 2 diabetic mellitus (T2DM) results in the poor outcome of ischemic stroke. However, the mechanisms by which T2DM causes aggravated cerebral ischemic/reperfusion (I/R) injury are not clear. Recently, endothelial progenitor cells (EPCs) are considered to be related with the outcome of ischemic stroke. More importantly, T2DM can affect the function of circulating EPCs. This study tried to investigate whether T2DM worsens the cerebral I/R injury via affecting circulating EPCs.

Methods: We used high-fat diet-fed and low-dose streptozotocin-treated male rats receiving middle cerebral artery occlusion surgery as animal model of focal cerebral I/R injury with T2DM (diabetic operated). And the rats were divided into 4 groups: normal sham, diabetic sham, normal operated, and diabetic operated. We measured the circulating EPCs counts and the levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral plasma of 4 groups.

Results: We found that diabetic rats subjected to I/R exhibited significantly severe deterioration in neurologic deficits compared with nondiabetic counterparts, which manifested higher infarct volume and cell apoptosis as well as lower neurologic defective score. There was no significant difference on the plasma glucose of groups before cerebral I/R injury compared with that of the groups posterior to cerebral I/R injury despite cerebral I/R injury had the tendency to increase the plasma glucose no matter in the presence or the absence of T2DM. In addition, there were the marked downregulation of circulating EPCs counts and the levels of VEGF and eNOS in diabetic rats before the cerebral I/R injury. Despite I/R injury without T2DM, there was a significant increase in the circulating EPCs counts, the circulating EPCs counts in I/R injury with T2DM group were significantly decreased compared with those in the other 3 groups. We also observed that the level of eNOS was significantly improved by I/R injury without considering the presence of T2DM.

Conclusions: Thus, our present study suggested that it might be the impaired EPCs mobilization into the blood that contributed to the worse outcome of cerebral I/R injury with T2DM.

Keywords: Ischemic stroke; endothelial progenitor cells; mobilization; type 2 diabetes mellitus.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources