Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct;2014(29):5008-5014.
doi: 10.1002/ejic.201402499. Epub 2014 Aug 15.

Mixed-Metal Oxo Clusters Structurally Derived from Ti6O4(OR)8(OOCR')8

Affiliations

Mixed-Metal Oxo Clusters Structurally Derived from Ti6O4(OR)8(OOCR')8

Christine Artner et al. Eur J Inorg Chem. 2014 Oct.

Abstract

The mixed-metal oxo clusters FeTi5O4(OiPr)4(OMc)10 (OMc = methacrylate), Zn2Ti4O4(OiPr)2(OMc)10, Cd4Ti2O2(OAc)2(OMc)10(HOiPr)2, [Ca2Ti4O4(OAc)2(OMc)10] n , and [Sr2Ti4O4(OMc)12(HOMc)2] n were obtained from the reaction of titanium alkoxides with the corresponding metal acetates and methacrylic acid. Their structures are derived from Ti clusters with the composition Ti6O4(OR)8(OOCR')8. The Ca and Sr derivatives consist of chains of condensed clusters.

Keywords: Bimetallic compounds; Carboxylate ligands; Chain structures; Cluster compounds; Titanium.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Molecular structure of Ti63-O)22-O)22-OiPr)22-OMc)8(OiPr)6 (Ti6): (top) ball-and-stick model; (bottom) polyhedral representation. Hydrogen atoms are omitted for clarity. Selected bond lengths and angles: Ti1–Ti2 3.3783(3), Ti1–Ti3 3.1062(3), Ti2–Ti3 3.5862(4), Ti1–O1 1.9047(9), Ti1–O2 1.7497(9), Ti1–O3 2.0874(9), Ti1–O4 2.0024(10), Ti1–O6 2.0465(10), Ti1–O8 2.0051(10), Ti2–O2 1.8893(9), Ti2–O1 1.9061(9), Ti2–O5 2.1019(10), Ti2–O7 2.0892(10), Ti2–O10 2.0300(10), Ti2–O12 1.7598(11), Ti3–O1 2.0722(9), Ti3–O3 1.9572(10), Ti3–O9 2.1627(11), Ti3–O11 2.0482(11), Ti3–O13 1.7995(10), Ti3–O14 1.7903(11) Å; Ti1–O1–Ti2 128.00(5), Ti1–O1–Ti3 102.63(4), Ti2–O1–Ti3 128.65(5)°.
Figure 2
Figure 2
Molecular structure of FeTi53-O)22-O)22-OiPr)2(OiPr)22-OMc)10 (FeTi5). Hydrogen atoms are omitted for clarity. Selected bond lengths and angles: Fe/Ti1–Fe/Ti2 3.4215(10), Fe/Ti1–Ti3 3.4917(10), Fe/Ti2–Ti3 3.0466(11), Fe/Ti1–O1 1.918(3), Fe/Ti1–O2 1.875(3), Fe/Ti2–O1 1.904(3), Fe/Ti2–O2 1.776(3), Ti3–O1 1.990(3), Fe/Ti1–O7 2.044(3), Fe/Ti1–O9 2.040(3), Fe/Ti2–O11 2.030(3), Ti3–O8 2.025(4), Ti3–O10 1.974(4), Ti3–O12 2.031(4), Fe/Ti1–O3 2.015(3), Fe/Ti1–O5 2.061(3), Fe/Ti2–O4 2.012(3), Fe/Ti2–O6 2.047(3), Fe/Ti2–O13 2.137(3), Ti3–O13 1.902(3), Ti3–O14 1.773(3) Å; Fe/Ti1–O1–Fe/Ti2 127.09(15), Fe/Ti1–O1–Ti3 126.61(14), Fe/Ti2–O1–Ti3 102.95(12)°.
Figure 3
Figure 3
Molecular structure of Zn2Ti43-O)22-O)2(OiPr)22-OMc)10 (Zn2Ti4). Hydrogen atoms are omitted for clarity. Selected bond lengths and angles: Zn1–Ti1 3.1470(4), Zn1–Ti2 3.2701(4), Ti1–Ti2 3.3652(5), Zn1–O1 1.9747(13), Ti1–O1 1.8712(13), Ti1–O2 1.7550(13), Ti2–O1 1.9231(14), Ti2–O2 1.8784(13), Ti2–O(13) 1.7821(14), Zn1–O3 1.946(2), Zn1–O5 1.959(2), Zn1–O7 1.940(2), Ti1–O4 2.106(2), Ti1–O6 2.0123(14), Ti2–O8 2.0435(14), Ti1–O9 2.0752(14), Ti1–O11 1.9994(14), Ti2–O10 2.0383(15), Ti2–O12 2.0936(14) Å; Zn1–O1–Ti1 109.80(7), Zn1–O1–Ti2 114.05(6), Ti1–O1–Ti2 136.01(7)°.
Figure 4
Figure 4
Molecular structure of Cd4Ti23-O)23-OAc)23-OMc)22-OMc)8(HOiPr)2 (Cd4Ti2). Only hydrogen of the OH groups are shown. Selected bond lengths and angles: Ti1–Cd1 3.4499(9), Ti1–Cd2 3.4521(9), Cd1–Cd2 3.8904(8), Ti1–O1 1.698(2), Cd1–O1 2.262(2), Cd2–O1 2.267(2), Cd1–O2 2.260(2), Cd1′–O2 2.355(2), Cd1–O4 2.232(2), Cd2–O3 2.267(3), Cd2–O4 2.336(2), Cd2–O5 2.368(2), Ti1–O7 2.012(2), Ti1–O9 1.997(2), Ti1–O11 1.977(2), Ti1–O13 1.986(2), Ti1–O14 2.227(2), Cd1–O6 2.256(2), Cd1–O8 2.260(2), Cd2–O10 2.279(3), Cd2–O12 2.228(3) Å; Cd1–O1–Cd2 118.40(9), Cd1–O1–Ti1 120.55(11), Cd2–O1–Ti1 120.36(11)°.
Figure 5
Figure 5
Structure of [Ca2Ti43-O)22-O)23-OAc)22-OMc)10]n (Ca2Ti4). Hydrogen atoms are omitted for clarity. Selected bond lengths and angles: Ca1–Ca1′ 4.0045(9), Ca1–Ti1 3.5083(6), Ca1–Ti2′ 3.6524(6), Ca1–O1 2.4549(16), Ti1–O1 1.965(2), Ti1–O2 1.730(2), Ti2–O1 1.760(2), Ti2–O2 1.912(2), Ca1–O3 2.428(2), Ca1–O4 2.659(2), Ca1′–O4 2.292(2), Ca1–O5 2.361(2), Ca1–O7 2.317(2), Ca1–O9 2.342(2), Ti1–O3 2.1116(18), Ti1–O6 1.9633(18), Ti2–O8 1.950(2), Ti2–O10 1.958(2), Ti1–O11 2.021(2), Ti1–O13 2.004(2), Ti2–O12 2.026(2), Ti2–O14 2.159(2) Å; Ca1–O1–Ti1 104.55(7), Ca1–O1–Ti2 119.20(8), Ti1–O1–Ti2 135.64(9)°.
Figure 6
Figure 6
Structure of [Ca2Ti43-O)22-O)23-OAc)(μ3-OMc)(μ2-OMc)102-HOMc)·BuOH]n (Ca2Ti4a). Only hydrogen atoms coordinated to oxygen atoms are displayed. Hydrogen bonds are drawn with blue dashed lines. Grey dashed lines indicate disordered parts. Selected bond lengths and angles: Ca1–Ca2 3.7089(8), Ca1–Ti1 3.5606(7), Ca1–Ti2′ 3.6737(7), Ca1–O1 2.500(2), Ti1–O1 1.931(2), Ti1–O2 1.745(2), Ti2–O1 1.774(2), Ti2–O2 1.875(2), Ca1–O3 2.560(2), Ca1–O4 2.510(2), Ca1′–O4 2.360(2), Ti1–O3 2.101(2), Ca1–O5 2.362(2), Ca1–O7 2.417(2), Ca1–O9 2.358(2), Ti1–O6 1.935(2), Ti2–O8 1.967(2), Ti2–O10 1.957(2), Ca1–O15 2.489(2), Ca2–O15 2.812(2), Ti1–O11 2.025(2), Ti1–O13 2.034(2), Ti2–O12 2.045(2), Ti2–O14 2.127(2) Å; Ca1–O1–Ti1 106.22(8), Ca1–O1–Ti2 117.52(9), Ti1–O1–Ti2 136.12(10)°.
Figure 7
Figure 7
Structure of [Sr2Ti43-O)22-O)23-OMc)62-OMc)62-HOMc)2]n (Sr2Ti4). Only hydrogen atoms coordinated to oxygen atoms are displayed. The blue dashed lines indicate hydrogen bridges. Selected bond lengths and angles: Sr1–Ti1 3.6312(4), Sr1–Ti2′ 3.7280(4), Ti1–Ti2 3.3691(5), Sr1–O1 2.581(2), Ti1–O1 1.803(2), Ti1–O2 1.836(2), Ti2–O1 1.884(2), Ti2–O2 1.777(2), Sr1–O3 2.877(2), Sr2–O4 2.598(4), Sr2–O4A 2.438(13), Sr1–O5 2.595(2), Sr2–O5 2.705(2), Sr1–O7 2.632(2), Sr1–O13 2.946(2), Sr1–O14 2.558(2), Sr1–O15 2.558(2), Ti1–O3 2.017(2), Ti1–O6 1.962(2), Ti1–O9 2.048(2), Ti1–O11 2.087(2), Ti2–O8 1.953(2), Ti2–O13 2.026(2), Ti2–O10 2.013(2), Ti2–O12 2.071(2) Å; Sr1–O1–Ti1 110.59(7), Sr1–O1–Ti2 112.29(7), Ti1–O1–Ti2 137.04(9)°.

References

    1. Schubert U. J. Mater. Chem. 2005;15:3701–3715.
    1. Moraru B, Hüsing N, Kickelbick G, Schubert U, Fratzl P, Peterlik H. Chem. Mater. 2002;14:2732–2740.
    1. Gautier-Luneau I, Mosset A, Galy J. Z. Kristallogr. 1987;180:83–95.
    2. Gautier-Luneau I, Mosset A, Galy J. Z. Kristallogr. 1987;180
    3. Gautier-Luneau I, Mosset A, Galy J. Z. Kristallogr. 1987;180
    4. Gautier-Luneau I, Mosset A, Galy J. Z. Kristallogr. 1987;180
    5. Gautier-Luneau I, Mosset A, Galy J. Z. Kristallogr. 1987;180
    6. Gautier-Luneau I, Mosset A, Galy J. Z. Kristallogr. 1987;180
    7. Gautier-Luneau I, Mosset A, Galy J. Z. Kristallogr. 1987;180
    8. Heinz P, Puchberger M, Bendova M, Baumann SO, Schubert U. Dalton Trans. 2010;39 - PubMed
    1. Moraru B, Kickelbick G, Schubert U. Eur. J. Inorg. Chem. 2001:1295–1301.
    2. Jupa M, Kickelbick G, Schubert U. Eur. J. Inorg. Chem. 2004
    1. Artner C, Czakler M, Schubert U. Chem. Eur. J. 2014;20:493–498. - PubMed

LinkOut - more resources