Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug 1;31(15):2530-6.
doi: 10.1093/bioinformatics/btv182. Epub 2015 Mar 29.

Outlier detection at the transcriptome-proteome interface

Affiliations

Outlier detection at the transcriptome-proteome interface

Yawwani Gunawardana et al. Bioinformatics. .

Abstract

Background: In high-throughput experimental biology, it is widely acknowledged that while expression levels measured at the levels of transcriptome and the corresponding proteome do not, in general, correlate well, messenger RNA levels are used as convenient proxies for protein levels. Our interest is in developing data-driven computational models that can bridge the gap between these two levels of measurement at which different mechanisms of regulation may act on different molecular species causing any observed lack of correlations. To this end, we build data-driven predictors of protein levels using mRNA levels and known proxies of translation efficiencies as covariates. Previous work showed that in such a setting, outliers with respect to the model are reliable candidates for post-translational regulation.

Results: Here, we present and compare two novel formulations of deriving a protein concentration predictor from which outliers may be extracted in a systematic manner. The first approach, outlier rejecting regression, allows explicit specification of a certain fraction of the data as outliers. In a regression setting, this is a non-convex optimization problem which we solve by deriving a difference of convex functions algorithm (DCA). With post-translationally regulated proteins, one expects their concentrations to be affected primarily by disruption of protein stability. Our second algorithm exploits this observation by minimizing an asymmetric loss using quantile regression and extracts outlier proteins whose measured concentrations are lower than what a genome-wide regression would predict. We validate the two approaches on a dataset of yeast transcriptome and proteome. Functional annotation check on detected outliers demonstrate that the methods are able to identify post-translationally regulated genes with high statistical confidence.

PubMed Disclaimer

MeSH terms