Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun;100(6):1948-54.
doi: 10.1083/jcb.100.6.1948.

Detachment of cells from culture substrate by soluble fibronectin peptides

Detachment of cells from culture substrate by soluble fibronectin peptides

E G Hayman et al. J Cell Biol. 1985 Jun.

Abstract

The synthetic cell attachment-promoting peptides from fibronectin (Pierschbacher, M. D., and E. Ruoslahti, 1984, Nature (Lond.)., 309:30-33) were found to detach cultured cells from the substratum when added to the culture in a soluble form. Peptides ranging in length from tetrapeptide to heptapeptide and containing the active L-arginyl-glycyl-L-aspartic acid (Arg-Gly-Asp) sequence had the detaching activity, whereas a series of different peptides with chemically similar structures had no detectable effect on any of the test cells. The Arg-Gly-Asp-containing peptides caused detachment of various cell lines of different species and histogenetic origin. Studies with defined substrates showed that the active peptides could inhibit the attachment of cells to vitronectin in addition to fibronectin, indicating that vitronectin is recognized by cells through a similar mechanism as fibronectin. The peptides did not inhibit the attachment of cells to collagen. However, cells cultured on collagen-coated plastic for 24-36 h, as well as cells with demonstrable type I or type VI collagen in their matrix, were susceptible to the detaching effect of the peptides. These results indicate that the recognition mechanism(s) by which cells bind to fibronectinand vitronectin plays a major role in the substratum attachment of cells and that collagens may not be directly involved in cell-substratum adhesion. Since vitronectin is abundant in serum, it is probably an important component in mediating the attachment of cultured cells. The independence of the effects of the peptide on the presence of serum and the susceptibility of many different cell types to detachment by the peptide show that the peptides perturb an attachment mechanism that is intrinsic to the cells and fundamentally significant to their adhesion.

PubMed Disclaimer

References

    1. J Biol Chem. 1984 Mar 25;259(6):3955-61 - PubMed
    1. Cell. 1983 Dec;35(3 Pt 2):667-75 - PubMed
    1. Nature. 1984 May 3-9;309(5963):30-3 - PubMed
    1. J Cell Biol. 1984 May;98(5):1662-71 - PubMed
    1. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5985-8 - PubMed

Publication types