Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 May;85(5):743-63.
doi: 10.1085/jgp.85.5.743.

Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons

Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons

P Forscher et al. J Gen Physiol. 1985 May.

Abstract

Modulation of voltage-dependent Ca channels by norepinephrine (NE) was studied in chick dorsal root ganglion cells using the whole-cell configuration of the patch-clamp technique. Cells dialyzed with K+ and 2-10 mM EGTA exhibited Ca action potentials that were reversibly decreased in duration and amplitude by NE. Ca channel currents were isolated from other channel contributions by using: (a) tetrodotoxin (TTX) to block gNa, (b) internal K channel impermeant ions (Cs or Na/N-methylglucamine mixtures) as K substitutes, (c) external tetraethylammonium (TEA) to block K channels, (d) internal EGTA to reduce possible current contribution from Ca-activated channels. A marked decline (rundown) of Ca conductance was observed during continual dialysis, which obscured reversible NE effects. The addition of 2-5 mM MgATP to the intracellular solutions greatly retarded Ca channel rundown and permitted a clear assessment of modulatory drug effects. The inclusion of an intracellular creatine phosphate/creatine phosphokinase nucleotide regeneration system further stabilized Ca channels, which permitted recording of Ca currents for up to 3 h. NE reversibly decreased both steady state Ca currents and Ca tail currents in Cs/EGTA/MgATP-dialyzed cells. A possible role of several putative intracellular second messengers in NE receptor-Ca channel coupling was investigated. Cyclic AMP or cyclic GMP added to the intracellular solutions at concentrations several orders of magnitude higher than the Kd for activation of cyclic nucleotide-dependent protein kinases did not block or mask the expression of the NE-mediated decrease in gCa. Addition of internal EGTA to a final concentration of 10 mM also did not affect the expression of the NE response. These results suggest that neither cyclic AMP nor cyclic GMP nor Ca is acting as a second messenger coupling the NE receptor to the down-modulated Ca channel population.

PubMed Disclaimer

References

    1. J Biol Chem. 1968 Jul 10;243(13):3763-5 - PubMed
    1. Biophys J. 1984 Sep;46(3):413-8 - PubMed
    1. Dev Biol. 1974 Mar;37(1):100-16 - PubMed
    1. Nature. 1975 Oct 23;257(5528):691-3 - PubMed
    1. J Physiol. 1977 May;267(2):281-98 - PubMed

Publication types

LinkOut - more resources