Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Feb;63(2):128-32.
doi: 10.4103/0301-4738.154384.

Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults

Affiliations
Review

Review of spectral domain-enhanced depth imaging optical coherence tomography of tumors of the retina and retinal pigment epithelium in children and adults

Carol L Shields et al. Indian J Ophthalmol. 2015 Feb.

Abstract

Background: Spectral domain (SD) enhanced depth imaging optical coherence tomography (EDI-OCT) is a useful tool for anatomic, cross-sectional imaging of retinal conditions.

Aims: The aim was to identify characteristic patterns of retinal and retinal pigment epithelial tumors on EDI-OCT in children and adults.

Settings and design: Retrospective review.

Materials and methods: Analysis of published reports and personal observations using office-based EDI-OCT for adults and portable hand-held SD OCT for infants and children.

Results: Using EDI-OCT, retinal tumors such as small retinoblastoma, astrocytic hamartoma, and hemangioblastoma arose abruptly from the retina, immediately adjacent to normal retina. Small exophytic retinoblastoma and retinal hemangioblastoma showed the full-thickness, homogeneous retinal disorganization with surrounding normal retina "draping" over the margins. Retinoblastoma occasionally had intralesional cavities and surrounding subretinal fluid. Hemangioblastoma often had adjacent intraretinal edema and subretinal fluid. Astrocytic hamartoma arose within the nerve fiber layer and sometimes with a "moth-eaten" or cavitary appearance. Retinal pigment epithelial (RPE) lesions such as congenital hypertrophy of RPE appeared flat with shadowing, occasional subretinal cleft, and abrupt photoreceptor loss. Congenital simple hamartoma showed an abrupt elevation from the inner retina with crisp, dark posterior shadowing. Combined hamartoma of the retina/RPE showed vitreoretinal traction causing "sawtooth mini-peak" or gently "maxi-peak" folding of the retina. RPE adenoma often produces remote macular edema or epiretinal membrane and the tumor has an irregular, "rugged" surface with deep shadowing.

Conclusions: Enhanced depth imaging optical coherence tomography shows characteristic patterns that are suggestive of certain retinal and RPE tumors.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
Retinoblastoma. (a-c) Infant with small macular retinoblastoma (a) with spectral domain optical coherence tomography (SD-OCT) (b and c) showing smooth anterior tumor surface, full-thickness retinal involvement, optically empty cavities, shadowing from calcification, and retinal draping over margins. (d and e) Small retinoblastoma (d) with SD-OCT (e) showing smooth tumor surface and full-thickness retinal involvement. (f and g) Large endophytic retinoblastoma (f) with SD-OCT (g) showing irregular, “frosty” tumor surface with overlying fine vitreous seeds. (h and i) Macular retinoblastoma (h) with SD-OCT (i) showing outer retinal involvement, anterior cavity, and notable inner retinal draping
Figure 2
Figure 2
Retinal astrocytic hamartoma and hemangioblastoma. (a and b) Retinal astrocytic hamartoma (a) with enhanced depth imaging optical coherence tomography (EDI-OCT) (b) showing the inner retinal mass compressing the outer retina and with central full-thickness involvement and “moth-eaten” lucencies. (c-e) Retinal hemangioblastoma (c) with EDI-OCT (d and e) showing exophytic mass pushing inner retina, outer retinal edema, subretinal debris and fluid
Figure 3
Figure 3
Retinal pigment epithelial (RPE) tumors. (a and b) Congenital hypertrophy of the retinal pigment epithelium (a) with enhanced depth imaging optical coherence tomography (EDI-OCT) (b) showing abrupt photoreceptor loss over the flat lesion, subretinal cleft, and transmission of light through lacunae. (c and d) Combined hamartoma of the retina and RPE (c) with EDI-OCT (d) showing thickened retina with disorganization and “folded” appearance with overlying dense epiretinal membrane. (e and f) Congenital simple hamartoma of the RPE (e) with EDI-OCT (f) showing an abrupt dense inner retinal mass with absolute shadowing and normal choroidal thickness. (g-i) RPE adenoma (g) with EDI-OCT showing remote cystoid macular edema (h) and irregular surface, tumor nodule, and deep shadowing (i)

References

    1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81. - PMC - PubMed
    1. Shields CL, Materin MA, Shields JA. Review of optical coherence tomography for intraocular tumors. Curr Opin Ophthalmol. 2005;16:141–54. - PubMed
    1. Say EA, Shah SU, Ferenczy S, Shields CL. Optical coherence tomography of retinal and choroidal tumors. J Ophthalmol 2012. 2012 385058. - PMC - PubMed
    1. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500. - PubMed
    1. Shields CL, Mashayekhi A, Luo CK, Materin MA, Shields JA. Optical coherence tomography in children: Analysis of 44 eyes with intraocular tumors and simulating conditions. J Pediatr Ophthalmol Strabismus. 2004;41:338–44. - PubMed

Publication types