Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul;134(1):125-34.
doi: 10.1111/jnc.13111. Epub 2015 Apr 23.

TGFβ1 inhibits IFNγ-mediated microglia activation and protects mDA neurons from IFNγ-driven neurotoxicity

Affiliations
Free article

TGFβ1 inhibits IFNγ-mediated microglia activation and protects mDA neurons from IFNγ-driven neurotoxicity

Xiaolai Zhou et al. J Neurochem. 2015 Jul.
Free article

Abstract

Microglia-mediated neuroinflammation has been reported as a common feature of familial and sporadic forms of Parkinson's disease (PD), and a growing body of evidence indicates that onset and progression of PD correlates with the extent of neuroinflammatory responses involving Interferon γ (IFNγ). Transforming growth factor β1 (TGFβ1) has been shown to be a major player in the regulation of microglia activation states and functions and, thus, might be a potential therapeutic agent by shaping microglial activation phenotypes during the course of neurodegenerative diseases such as PD. In this study, we demonstrate that TGFβ1 is able to block IFNγ-induced microglia activation by attenuating STAT1 phosphorylation and IFNγRα expression. Moreover, we identified a set of genes involved in microglial IFNγ signaling transduction that were significantly down-regulated upon TGFβ1 treatment, resulting in decreased sensitivity of microglia toward IFNγ stimuli. Interestingly, genes mediating negative regulation of IFNγ signaling, such as SOCS2 and SOCS6, were up-regulated after TGFβ1 treatment. Finally, we demonstrate that TGFβ1 is capable of protecting midbrain dopaminergic (mDA) neurons from IFNγ-driven neurotoxicity in mixed neuron-glia cultures derived from embryonic day 14 (E14) midbrain tissue. Together, these data underline the importance of TGFβ1 as a key immunoregulatory factor for microglia by silencing IFNγ-mediated microglia activation and, thereby, rescuing mDA neurons from IFNγ-induced neurotoxicity. Interferon γ (IFNγ) is a potent pro-inflammatory factor that triggers the activation of microglia and the subsequent release of neurotoxic factors. Transforming growth factor β1 (TGFβ1) is able to inhibit the IFNγ-mediated activation of microglia, which is characterized by the release of nitric oxide (NO) and tumor necrosis factor α (TNFα). By decreasing the expression of IFNγ-induced genes as well as the signaling receptor IFNγR1, TGFβ1 reduces the responsiveness of microglia towards IFNγ. In mixed neuron-glia cultures, TGFβ1 protects midbrain dopaminergic (mDA) neurons from IFNγ-induced neurotoxicity.

Keywords: IFNγ; TGFβ1; mDA neurons; microglia.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources