Novel agents for the treatment of childhood acute leukemia
- PMID: 25830014
- PMCID: PMC4365053
- DOI: 10.1177/2040620714565963
Novel agents for the treatment of childhood acute leukemia
Abstract
Together, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) make up approximately one-third of all pediatric cancer diagnoses. Despite remarkable improvement in the treatment outcomes of these diseases over the past several decades, the prognosis for certain high-risk groups of leukemia and for relapsed disease remains poor. However, recent insights into different types of 'driver' lesions of leukemogenesis, such as the aberrant activation of signaling pathways and various epigenetic modifications, have led to the discovery of novel agents that specifically target the mechanism of transformation. In parallel, emerging approaches in cancer immunotherapy have led to newer therapies that can exploit and harness cytotoxic immunity directed against malignant cells. This review details the rationale and implementation of recent and specifically targeted therapies in acute pediatric leukemia. Topics covered include the inhibition of critical cell signaling pathways [BCR-ABL, FMS-like tyrosine kinase 3 (FLT3), mammalian target of rapamycin (mTOR), and Janus-associated kinase (JAK)], proteasome inhibition, inhibition of epigenetic regulators of gene expression [DNA methyltransferase (DNMT) inhibitors, histone deacetylase (HDAC) inhibitors, and disruptor of telomeric signaling-1 (DOT1L) inhibitors], monoclonal antibodies and immunoconjugated toxins, bispecific T-cell engaging (BiTE) antibodies, and chimeric antigen receptor-modified (CAR) T cells.
Keywords: ALL; AML; CAR T-cells; EPZ-5676; FLT3; blinatumomab; carfilzomib; moxetumomab.
Conflict of interest statement
Similar articles
-
Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells.J Hematol Oncol. 2018 May 2;11(1):60. doi: 10.1186/s13045-018-0603-7. J Hematol Oncol. 2018. PMID: 29716633 Free PMC article.
-
Molecularly targeted therapies for pediatric acute myeloid leukemia: progress to date.Paediatr Drugs. 2008;10(2):85-92. doi: 10.2165/00148581-200810020-00003. Paediatr Drugs. 2008. PMID: 18345718 Review.
-
A novel approach for relapsed/refractory FLT3mut+ acute myeloid leukaemia: synergistic effect of the combination of bispecific FLT3scFv/NKG2D-CAR T cells and gilteritinib.Mol Cancer. 2022 Mar 4;21(1):66. doi: 10.1186/s12943-022-01541-9. Mol Cancer. 2022. PMID: 35246156 Free PMC article.
-
The Biology and Targeting of FLT3 in Pediatric Leukemia.Front Oncol. 2014 Sep 23;4:263. doi: 10.3389/fonc.2014.00263. eCollection 2014. Front Oncol. 2014. PMID: 25295230 Free PMC article. Review.
-
CD44v6 chimeric antigen receptor T cell specificity towards AML with FLT3 or DNMT3A mutations.Clin Transl Med. 2022 Sep;12(9):e1043. doi: 10.1002/ctm2.1043. Clin Transl Med. 2022. PMID: 36163632 Free PMC article.
Cited by
-
Translational advances in the treatment of childhood acute lymphoblastic leukemia: narrative review of current and emerging molecular and immunotherapies.Transl Pediatr. 2023 Mar 31;12(3):487-502. doi: 10.21037/tp-22-656. Epub 2023 Feb 24. Transl Pediatr. 2023. PMID: 37035397 Free PMC article. Review.
-
Acute lymphoblastic leukemia relapsing after first-line pediatric-inspired therapy: a retrospective GRAALL study.Blood Cancer J. 2016 Dec 9;6(12):e504. doi: 10.1038/bcj.2016.111. Blood Cancer J. 2016. PMID: 27935576 Free PMC article. Clinical Trial.
-
JAK2 in pediatric leukemia: mechanisms of pathogenesis and drug development - a narrative review.Ann Med Surg (Lond). 2025 Mar 18;87(6):3410-3423. doi: 10.1097/MS9.0000000000003180. eCollection 2025 Jun. Ann Med Surg (Lond). 2025. PMID: 40486651 Free PMC article. Review.
-
Advances in biology of acute lymphoblastic leukemia (ALL) and therapeutic implications.Am J Blood Res. 2018 Dec 10;8(4):29-56. eCollection 2018. Am J Blood Res. 2018. PMID: 30697448 Free PMC article. Review.
-
Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential.Ther Adv Med Oncol. 2016 Jan;8(1):4-31. doi: 10.1177/1758834015615514. Ther Adv Med Oncol. 2016. PMID: 26753003 Free PMC article. Review.
References
-
- Advani A., Coiffier B., Czuczman M., Dreyling M., Foran J., Gine E., et al. (2010) Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol 28: 2085–2093. - PubMed
-
- Aplenc R., Alonzo T., Sung L., Meshinchi S., Gerbing R., Raimondi S., et al. (2013) Gemtuzumab Ozogamicin (GO) in children with De Novo Acute Myeloid Leukemia (AML) improves Event-Free Survival (EFS) by reducing relapse risk – results from the randomized Phase III Children’s Oncology Group (COG) trial, AAML0531. Blood 122: 355–355. - PubMed
-
- Arastu-Kapur S., Anderl J., Kraus M., Parlati F., Shenk K., Lee S., et al. (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 17: 2734–2743. - PubMed
-
- Armstrong S., Staunton J., Silverman L., Pieters R., den Boer M., Minden M., et al. (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Gen 30: 41–47. - PubMed
-
- Attar E., De Angelo D., Supko J., D’Amato F., Zahrieh D., Sirulnik A., et al. (2008) Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin Cancer Res 14: 1446–1454. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous