Gq signaling causes glomerular injury by activating TRPC6
- PMID: 25844902
- PMCID: PMC4463190
- DOI: 10.1172/JCI76767
Gq signaling causes glomerular injury by activating TRPC6
Abstract
Familial forms of focal segmental glomerulosclerosis (FSGS) have been linked to gain-of-function mutations in the gene encoding the transient receptor potential channel C6 (TRPC6). GPCRs coupled to Gq signaling activate TRPC6, suggesting that Gq-dependent TRPC6 activation underlies glomerular diseases. Here, we developed a murine model in which a constitutively active Gq α subunit (Gq(Q209L), referred to herein as GqQ>L) is specifically expressed in podocytes and examined the effects of this mutation in response to puromycin aminonucleoside (PAN) nephrosis. We found that compared with control animals, animals expressing GqQ>L exhibited robust albuminuria, structural features of FSGS, and reduced numbers of glomerular podocytes. Gq activation stimulated calcineurin (CN) activity, resulting in CN-dependent upregulation of TRPC6 in murine kidneys. Deletion of TRPC6 in GqQ>L-expressing mice prevented FSGS development and inhibited both tubular damage and podocyte loss induced by PAN nephrosis. Similarly, administration of the CN inhibitor FK506 reduced proteinuria and tubular injury but had more modest effects on glomerular pathology and podocyte numbers in animals with constitutive Gq activation. Moreover, these Gq-dependent effects on podocyte injury were generalizable to diabetic kidney disease, as expression of GqQ>L promoted albuminuria, mesangial expansion, and increased glomerular basement membrane width in diabetic mice. Together, these results suggest that targeting Gq/TRPC6 signaling may have therapeutic benefits for the treatment of glomerular diseases.
Figures
Comment in
-
Glomerular disease: A "double hit" can injure podocytes.Nat Rev Nephrol. 2015 Jun;11(6):317. doi: 10.1038/nrneph.2015.60. Epub 2015 Apr 21. Nat Rev Nephrol. 2015. PMID: 25898357 No abstract available.
References
-
- Pavenstädt H. Roles of the podocyte in glomerular function. Am J Physiol Renal Physiol. 2000;278(2):F173–F179. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
