Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique
- PMID: 2584558
- DOI: 10.1016/0735-1097(89)90017-x
Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique
Abstract
One hundred eight-three men underwent stress-redistribution thallium-201 myocardial perfusion tomography. After evaluation of various preprocessing filters in a phantom study, the Butterworth filter with a frequency cutoff of 0.2 cycles/pixel, order 5 (which provided optimal filter power) was used in the back projection algorithm of the patient studies. All short-axis and apical portions of vertical long-axis images were quantified by dividing each myocardial slice into 60 equal sectors and displaying the maximal count per sector as a linear profile. In a pilot group consisting of 20 normal men (less than 5% likelihood of coronary artery disease) and 25 men with coronary artery disease (greater than or equal to 50% coronary stenosis by angiography), profiles representing the lowest observed value below the mean normal profiles provided the best threshold for defining normal limits. Abnormal portions of the patient profiles were plotted on a two-dimensional polar map. The polar map was divided into 102 sectors, and sectors with a probability of greater than or equal to 80% for disease of each one of the three major coronary arteries were clustered to represent specific coronary artery territories. Receiver operating characteristic curve analysis for defect size showed that the optimal threshold for defining a definite perfusion defect was 12% for the left anterior descending and left circumflex and 8% for the right coronary artery territories. These criteria were prospectively applied to an additional 92 patients with angiographic coronary artery disease, 18 patients with normal coronary arteriograms and 28 patients with less than 5% likelihood of coronary disease. Sensitivity, specificity (in patients with normal coronary arteriograms) and normalcy rate (in patients with less than 5% likelihood of coronary artery disease) for overall detection of coronary disease were 96%, 56% and 86%, respectively. Sensitivity and specificity for identification of individual diseased vessels were, respectively, 78% and 85% for the left anterior descending, 79% and 60% for the left circumflex and 81% and 71% for the right coronary artery. These results were not significantly different from those of the pilot group. An optimized quantitative method for interpretation of stress thallium-201 myocardial perfusion tomography has been developed. Prospective application of this method indicates that the technique is accurate for the overall detection of coronary artery disease and identification of disease in individual arteries.
Comment in
-
Single photon emission computed tomography (SPECT): 1989 and beyond.J Am Coll Cardiol. 1989 Dec;14(7):1700-1. doi: 10.1016/0735-1097(89)90018-1. J Am Coll Cardiol. 1989. PMID: 2584559 No abstract available.
Similar articles
-
Analysis of thallium-201 single-photon emission computed tomography after intravenous dipyridamole using different quantitative measures of coronary stenosis severity and receiver operator characteristic curves.Am Heart J. 1992 Jul;124(1):65-74. doi: 10.1016/0002-8703(92)90921-h. Am Heart J. 1992. PMID: 1615829
-
The variable extent of jeopardized myocardium in patients with single vessel coronary artery disease: quantification by thallium-201 single photon emission computed tomography.J Am Coll Cardiol. 1991 Feb;17(2):355-62. doi: 10.1016/s0735-1097(10)80099-3. J Am Coll Cardiol. 1991. PMID: 1991891
-
Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis.J Am Coll Cardiol. 1989 Mar 1;13(3):600-12. doi: 10.1016/0735-1097(89)90600-1. J Am Coll Cardiol. 1989. PMID: 2563741 Clinical Trial.
-
Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease.Circulation. 1988 Feb;77(2):316-27. doi: 10.1161/01.cir.77.2.316. Circulation. 1988. PMID: 3257422
-
Quantitative planar and tomographic thallium-201 myocardial perfusion imaging.Cardiovasc Intervent Radiol. 1987;10(6):374-83. doi: 10.1007/BF02577348. Cardiovasc Intervent Radiol. 1987. PMID: 3123063 Review.
Cited by
-
Myocardial perfusion imaging: clinical experience and recent progress in radionuclide scintigraphy and magnetic resonance imaging.Int J Card Imaging. 1997 Oct;13(5):415-31. doi: 10.1023/a:1005737725964. Int J Card Imaging. 1997. PMID: 9360178 Review.
-
Gender differences in the diagnostic accuracy of SPECT myocardial perfusion imaging: a bivariate meta-analysis.J Nucl Cardiol. 2013 Feb;20(1):53-63. doi: 10.1007/s12350-012-9646-2. Epub 2012 Nov 13. J Nucl Cardiol. 2013. PMID: 23149886
-
Improved coronary disease detection with quantitative attenuation-corrected Tl-201 images.J Nucl Cardiol. 2002 Jan-Feb;9(1):52-62. doi: 10.1067/mnc.2002.119252. J Nucl Cardiol. 2002. PMID: 11845130
-
Diagnostic performance of low-dose rest/stress Tc-99m tetrofosmin myocardial perfusion SPECT using the 530c CZT camera: quantitative vs visual analysis.J Nucl Cardiol. 2014 Feb;21(1):158-65. doi: 10.1007/s12350-013-9827-7. Epub 2013 Nov 28. J Nucl Cardiol. 2014. PMID: 24287713
-
Clinical validation of three-dimensional color-modulated displays of myocardial perfusion.J Nucl Cardiol. 1997 Mar-Apr;4(2 Pt 1):108-16. doi: 10.1016/s1071-3581(97)90059-3. J Nucl Cardiol. 1997. PMID: 9115062
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources