Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Mar 3:15:113.
doi: 10.1186/s12879-015-0857-4.

Antibodies to group A streptococcal virulence factors, SIC and DRS, increase predilection to GAS pyoderma

Antibodies to group A streptococcal virulence factors, SIC and DRS, increase predilection to GAS pyoderma

Mohan G Karmarkar et al. BMC Infect Dis. .

Abstract

Background: Streptococcus pyogenes (group A streptococcus; GAS) is an etiological agent for pharyngitis, pyoderma, and invasive infections in humans. Pharyngitis and pyoderma may lead to serious immune sequelae such as rheumatic heart disease and post-streptococcal glomerulonephritis (PSGN). Streptococcal Inhibitor of Complement (SIC) and its orthologue, distantly related to SIC (DRS), are virulence factors expressed by only four of more than 100 M types of GAS. These four types (M1, M57, M12 and M55) are among the M types, which are associated with PSGN. In several populations PSGN has been shown to be a risk factor for chronic kidney disease (CKD) and end-stage renal disease (ESRD). Previous studies showed SIC or DRS antibody-prevalence was associated with PSGN, and seroprevalence of SIC antibodies is significantly high among CKD and ESRD patients in Mumbai.

Methods: Streptococcal isolates recovered from GAS pyoderma cases were typed. Seropositivity for SIC and DRS antibodies in subjects with pyoderma, PSGN pediatric cases, age matched healthy controls and non-GAS pyoderma cases were determined.

Results: We confirm in this study an association between seroprevalence to SIC and DRS antibodies, and PSGN in Mumbai population despite low point prevalence of M1, M12, M55 and M57. In addition we extended the study to GAS-pyoderma and non-GAS pyoderma cases. To our surprise, we found a positive association between the seroprevalence to SIC and DRS antibodies, and GAS-pyoderma owing to infection with diverse M types. The mechanism of increased predisposition to pyoderma owing to infection by diverse GAS among SIC or DRS antibody-positive population is not clear. Nonetheless, our findings could be explained by a phenomenon akin to antibody-dependent enhancement (ADE).

Conclusions: This is the first report showing a small number of GAS M types conferring predisposition to pyoderma by diverse types. Implications of this ADE-like phenomenon are discussed in the light of evolutionary advantage to GAS, vaccine design and control of renal diseases.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Seroprevalence for SIC and DRS antibodies in PSGN, pyoderma and control groups. Recombinant SIC and DRS proteins with a thioredoxin tag were used as the streptococcal antigens for ELISA. Background optical density (OD450) readings to thioredoxin were subtracted from all ODs. OD values for control 1 and PSGN cases (n = 25 each) are shown in panel A and for control 2 (n = 50), GAS pyoderma (n = 150) and non-GAS pyoderma (n = 50) cases in panel C. The box-whisker plots show median (cross bar in the box), quartiles, and range. The mean OD values for control 1 are 0.081 and 0.042 for SIC and DRS respectively; and those for control 2 are 0.12 and 0.076 respectively. These means and those for non-GAS pyoderma cases (0.14 and 0.09 for SIC and DRS respectively) are not significantly different. The means for PSGN and GAS pyoderma cohorts are significantly higher than their controls for both SIC and DRS (p < 0.05, >0.01 for PSGN; and p < 0.0001 for GAS pyoderma). The calculated cutoff values (mean + 2x Standard deviation for the corresponding control) is shown as dotted line across. Samples scoring equal to or above the cutoff values were scored as positive. Panels B and D show per cent seropositive samples for SIC antibodies (black bars) or DRS antibodies (shaded bars) in each group and compared with respective controls. Lines with asterisks indicate statistically significant differences (** = 0.05 ≤ p > 0.0001; *** = p ≤ 0.0001) between the means in 1A and 1C, and between proportion of seropositives in 1B and 1D. Lack of such lines means there is no significant differences between groups (eg; control 2 and non-GAS pyoderma groups in 1C and 1D).
Figure 2
Figure 2
Competitive ELISAs. Sera samples positive to SIC only, DRS only or to SIC + DRS were pre-incubated with homologous, heterologous or both competitor antigens at 0 μg, 10 μg and 50 μg prior to incubation with SIC (Panel A) or DRS (Panel B) coated plates for ELISA.

Similar articles

Cited by

References

    1. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13(3):470–511. doi: 10.1128/CMR.13.3.470-511.2000. - DOI - PMC - PubMed
    1. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al. Disease manifestations and pathogenic mechanisms of group a Streptococcus. Clin Microbiol Rev. 2014;27(2):264–301. doi: 10.1128/CMR.00101-13. - DOI - PMC - PubMed
    1. Akesson P, Sjoholm AG, Bjorck L. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J Biol Chem. 1996;271(2):1081–8. doi: 10.1074/jbc.271.2.1081. - DOI - PubMed
    1. Binks M, McMillan D, Sriprakash KS. Genomic location and variation of the gene for CRS, a complement binding protein in the M57 strains of Streptococcus pyogenes. Infect Immun. 2003;71(12):6701–6. doi: 10.1128/IAI.71.12.6701-6706.2003. - DOI - PMC - PubMed
    1. Hartas J, Sriprakash KS. Streptococcus pyogenes strains containing emm12 and emm55 possess a novel gene coding for distantly related SIC protein. Microb Pathog. 1999;26(1):25–33. doi: 10.1006/mpat.1998.0244. - DOI - PubMed

Publication types

MeSH terms